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Preface 

At a Snowbird conference on neural nets in 1992, David Haussler and his col- 
leagues at UC Santa Cruz (including one of us, AK) described preliminary re- 
sults on modelling protein sequence multiple alignments with probabilistic mod- 
els called 'hidden Markov models' (HMMs). Copies of their technical report 
were widely circulated. Some of them found their way to the MRC Laboratory 
of Molecular Biology in Cambridge, where RD and GJM were just switching re- 
search interests from neural modelling to computational genome sequence analy- 
sis, and where SRE had arrived as a new postdoctoral student with a background 
in experimental molecular genetics and an interest in computational analysis. AK 
later also came to Cambridge for a year. 

All of us quickly adopted the ideas of probabilistic modelling. We were per- 
suaded that hidden Markov models and their stochastic grammar analogues are 
beautiful mathematical objects, well fitted to capturing the information buried 
in biological sequences. The Santa Cruz group and the Cambridge group inde- 
pendently developed two freely available HMM software packages for sequence 
analysis, and independently extended HMM methods to stochastic context-free 
grammar analysis of RNA secondary structures. Another group led by Pierre 
Baldi at JPL/Caltech was also inspired by the work presented at the Snowbird 
conference to work on HMM-based approaches at about the same time. 

By late 1995, we thought that we had acquired a reasonable amount of expe- 
rience in probabilistic modelling techniques. On the other hand, we also felt that 
relatively little of the work had been communicated effectively to the cornmu- 
nity. HMMs had stirred widespread interest, but they were still viewed by many 
as mathematical black boxes instead of natural models of sequence alignment 
problems. Many of the best papers that described HMM ideas and methods in 
detail were in the speech recognition literature, effectively inaccessible to many 
computational biologists. Furthermore, it had become clear to us and several 
other groups that the same ideas could be applied to a much broader class of 
problems, including protein structure modelling, genefinding, and phylogenetic 
analysis. Over the Christmas break in 1995-96, perhaps somewhat deluded by 
ambition, naiveti, and holiday relaxation, we decided to write a book on biologi- 
cal sequence analysis emphasizing probabilistic modelling. In the past two years, 
our original grand plans have been distilled into what we hope is a practical book. 
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This is a subjective book written by opinionated authors. It is not a tutorial on 
practical sequence analysis. Our main goal is to give an accessible introduction 
to the foundations of sequence analysis, and to show why we think the probabilis- 
tic modelling approach is useful. We try to avoid discussing specific computer 
programs, and instead focus on the algorithms and principles behind them. 

We have carefully cited the work of the many authors whose work has influ- 
enced our thinking. However, we are sure we have failed to cite others whom 
we should have read. and for this we apologise. Also, in a book that necessarily 
touches on fields ranging from evolutionary biology through probability theory 
to biophysics, we have been forced by limitations of time, energy, and our own 
imperfect understanding to deal with a number of issues in a superficial manner. 

Computational biology is an interdisciplinary field. Its practitioners, including 
us, come from diverse backgrounds, including molecular biology, mathematics, 
computer science, and physics. Our intended audience is any graduate or ad- 
vanced undergraduate student with a background in one of these fields. We aim 
for a concise and intuitive presentation that is neither forbiddingly mathematical 
nor too technically biological. 

We assume that readers are already familiar with the basic principles of molec- 
ular genetics, such as the Central Dogma that DNA makes RNA makes protein, 
and that nucleic acids are sequences composed of four nucleotide subunits and 
proteins are sequences composed of twenty amino acid subunits. More detailed 
molecular genetics is introduced where necessary. We also assume a basic profi- 
ciency in mathematics. However, there are sections that are more mathematically 
detailed. We have tried to place these towards the end of each chapter, and in 
general towards the end of the book. In particular, the final chapter, Chapter 11, 
covers some topics in probability theory that are relevant to much of the earlier 
material. 

We are grateful to several people who kindly checked parts of the manuscript 
for us at rather short notice. We thank Ewan Birney, Bill Bruno, David MacKay, 
Cathy Eddy, Jotun Hein, and Sgren Riis especially. Bret Larget and Robert Mau 
gave us very helpful information about the sampling methods they have been 
using for phylogeny. David Haussler bravely used an embarrassingly early draft 
of the manuscript in a course at UC Santa Cruz in the autumn of 1996, and we 
thank David and his entire class for the very useful feedback we received. We are 
also grateful to David for inspiring us to work in this field in the first place. It 
has been a pleasure to work with David Tranah and Maria Murphy of Cambridge 
University Press and Sue Glover of SG Publishing in producing the book; they 
demonstrated remarkable expertise in the editing and I4T# typesetting of a book 
laden with equations, algorithms, and pseudocode, and also remarkable tolerance 
of our wildly optimistic and inaccurate target dates. We are sure that some of our 
errors remain, but their number would be far greater without the help of all these 
people. 
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We also wish to thank those who supported our research and our work on this 
book: the Wellcome Trust, the NIH National Human Genome Research Insti- 
tute, NATO, Eli Lilly & Co., the Human Frontiers Science Program Organisa- 
tion, and the Danish National Research Foundation. We also thank our home 
institutions: the Sanger Centre (RD), Washington University School of Medicine 
(SRE), the Center for Biological Sequence Analysis (AK), and the MRC Labo- 
ratory of Molecular Biology (GJM). Jim and Anne Durbin graciously lent us the 
use of their house in London in February 1997, where an almost final draft of the 
book coalesced in a burst of writing and criticism. We thank our friends, fami- 
lies, and research groups for tolerating the writing process and SRE's and AK's 
long trips to England. We promise to take on no new grand projects, at least not 
immediately. 



Introduction 

Astronomy began when the Babylonians mapped the heavens. Our descendants 
will certainly not say that biology began with today's genome projects, but they 
may well recognise that a great acceleration in the accumulation of biological 
knowledge began in our era. To make sense of this knowledge is a challenge, 
and will require increased understanding of the biology of cells and organisms. 
But part of the challenge is simply to organise, classify and parse the immense 
richness of sequence data. This is more than an abstract task of string parsing, for 
behind the string of bases or amino acids is the whole complexity of molecular 
biology. This book is about methods which are in principle capable of capturing 
some of this complexity, by integrating diverse sources of biological information 
into clean, general, and tractable probabilistic models for sequence analysis. 

Though this book is about computational biology, let us be clear about one 
thing from the start: the most reliable way to determine a biological molecule's 
structure or function is by direct experimentation. However, it is far easier to 
obtain the DNA sequence of the gene corresponding to an RNA or protein than it 
is to experimentally determine its function or its structure. This provides strong 
motivation for developing computational methods that can infer biological infor- 
mation from sequence alone. Computational methods have become especially 
important since the advent of genome projects. The Human Genome Project 
alone will give us the raw sequences of an estimated 70000 to 100000 human 
genes, only a small fraction of which have been studied experimentally. 

Most of the problems in computational sequence analysis are essentially sta- 
tistical. Stochastic evolutionary forces act on genomes. Discerning significant 
similarities between anciently diverged sequences amidst a chaos of random mu- 
tation, natural selection, and genetic drift presents serious signal to noise prob- 
lems. Many of the most powerful analysis methods available make use of proba- 
bility theory. In this book we emphasise the use of probabilistic models, particu- 
larly hidden Markov models (HMMs), to provide a general structure for statistical 
analysis of a wide variety of sequence analysis problems. 
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1.1 Sequence similarity, homology, and alignment 

Nature is a tinkerer and not an inventor [Jacob 19771. New sequences are adapted 
from pre-existing sequences rather than invented de now. This is very fortunate 
for computational sequence analysis. We can often recognise a significant simi- 
larity between a new sequence and a sequence about which something is already 
known; when we do this we can transfer information about structure andlor func- 
tion to the new sequence. We say that the two related sequences are homologous 
and that we are transfering information by homology. 

At first glance, deciding that two biological sequences are similar is no dif- 
ferent from deciding that two text strings are similar. One set of methods for 
biological sequence analysis is therefore rooted in computer science, where there 
is an extensive literature on string comparison methods. The concept of an align- 
ment is crucial. Evolving sequences accumulate insertions and deletions as well 
as substitutions, so before the similarity of two sequences can be evaluated, one 
typically begins by finding a plausible alignment between them. 

Almost all alignment methods find the best alignment between two strings 
under some scoring scheme. These scoring schemes can be as simple as '+I for 
a match, - I  for a mismatch'. Indeed, many early sequence alignment algorithms 
were described in these terms. However, since we want a scoring scheme to 
give the biologically most likely alignment the highest score, we want to take 
into account the fact that biological molecules have evolutionary histories, three- 
dimensional folded structures, and other features which constrain their primary 
sequence evolution. Therefore, in addition to the mechanics of alignment and 
comparison algorithms, the scoring system itself requires careful thought, and 
can be very complex. 

Developing more sensitive scoring schemes and evaluating the significance of 
alignment scores is more the realm of statistics than computer science. An early 
step forward was the introduction of probabilistic matrices for scoring pairwise 
amino acid alignments [Dayhoff, Eck & Park 1972; Dayhoff, Schwartz & Orcutt 
19781; these serve to quantify evolutionary preferences for certain substitutions 
over others. More sophisticated probabilistic modelling approaches have been 
brought gradually into computational biology by many routes. Probabilistic mod- 
elling methods greatly extend the range of applications that can be underpinned 
by useful and consistent theory, by providing a natural framework in which to 
address complex inference problems in computational sequence analysis. 

1.2 Overview of the book 

The book is loosely structured into four parts covering problems in pairwise 
alignment, multiple alignment, phylogenetic trees, and RNA structure. Figure 1.1 
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Figure 1.1 Overview of the book, and suggested paths through it. 

shows suggested paths through the chapters in the form of a state machine, one 
sort of model we will use throughout the book. 

The individual chapters cover topics as follows: 

2 Pairwise alignment. We start with the problem of deciding if a pair of se- 
quences are evolutionarily related or not. We examine traditional pair- 
wise sequence alignment and comparison algorithms which use dynamic 
programming to find optimal gapped alignments. We give some proba- 
bilistic analysis of scoring parameters, and some discussion of the statis- 
tical significance of matches. 

3 Markov chains and hidden Markov models. We introduce hidden Markov 
models (HMMs) and show how they are used to model a sequence or 
a family of sequences. The chapter gives all the basic HMM algorithms 
and theory, using simple examples. 

4 Pairwise alignment using HMMs. Newly equipped with HMM theory, we 
revisit pairwise alignment. We develop a special sort of HMM that mod- 
els aligned pairs of sequences. We show how the HMM-based approach 
provides some nice ways of estimating accuracy of an alignment, and 
scoring similarity without committing to any particular alignment. 

5 Profile HMMs for sequence families. We consider the problem of finding se- 
quences which are homologous to a known evolutionary family or su- 
perfamily. One standard approach to this problem has been the use of 
'profiles' of position-specific scoring parameters derived from a multiple 
sequence alignment. We describe a standard form of HMM, called a pro- 
file HMM, for modelling protein and DNA sequence families based on 
multiple alignments. Particular attention is given to parameter estimation 
for optimal searching for new family members, including a discussion of 
sequence weighting schemes. 

6 Multiple sequence alignment methods. A closely related problem is that of 
constructing a multiple sequence alignment of a family. We examine 
existing multiple sequence alignment algorithms from the standpoint of 
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probabilistic modelling, before describing multiple alignment algorithms 
based on profile HMMs. 

7 Building phylogenetic trees. Some of the most interesting questions in biol- 
ogy concern phylogeny. How and when did genes and species evolve? 
We give an overview of some popular methods for inferring evolutionary 
trees, including clustering, distance and parsimony methods. The chapter 
concludes with a description of Hein's parsimony algorithm for simulta- 
neously aligning and inferring the phylogeny of a sequence family. 

8 A probabilistic approach to phylogeny. We describe the application of prob- 
abilistic modelling to phylogeny, including maximum likelihood estima- 
tion of tree scores and methods for sampling the posterior probability 
distribution over the space of trees. We also give a probabilistic interpre- 
tation of the methods described in the preceding chapter. 

9 Transformational grammars. We describe how hidden Markov models are 
just the lowest level in the Chomsky hierarchy of transformational gram- 
mars. We discuss the use of more complex transformational grammars 
as probabilistic models of biological sequences, and give an introduction 
to the stochastic context-free grammars, the next level in the Chomsky 
hierarchy. 

10 RNA structure analysis. Using stochastic context-free grammar theory, we 
tackle questions of RNA secondary structure analysis that cannot be han- 
dled with HMMs or other primary sequence-based approaches. These 
include RNA secondary structure prediction, structure-based alignment 
of RNAs, and structure-based database search for homologous RNAs. 

11 Background on probability. Finally, we give more formal details for the 
mathematical and statistical toolkit that we use in a fairly informal tu- 
torial-style fashion throughout the rest of the book. 

1.3 Probabilities and probabilistic models 

Some basic results in using probabilities are necessary for understanding almost 
any part of this book, so before we get going with sequences, we give a brief 
primer here on the key ideas and methods. For many readers, this will be familiar 
territory. However, it may be wise to at least skim though this section to get 
a grasp of the notation and some of the ideas that we will develop later in the 
book. Aside from this very basic introduction, we have tried to minimise the 
discussion of abstract probability theory in the main body of the text, and have 
instead concentrated the mathematical derivations and methods into Chapter 11, 
which contains a more thorough presentation of the relevant theory. 

What do we mean by a probabilistic model? When we talk about a model 
normally we mean a system that simulates the object under consideration. A 



1.3 Probabilities and probabilistic models 5 

probabilistic model is one that produces different outcomes with different prob- 
abilities. A probabilistic model can therefore simulate a whole class of objects, 
assigning each an associated probability. In our case the objects will normally be 
sequences, and a model might describe a family of related sequences. 

Let us consider a very simple example. A familiar probabilistic system with 
a set of discrete outcomes is the roll of a six-sided die. A model of a roll of 
a (possibly loaded) die would have six parameters pl . . . Pfj; the probability of 
rolling i is pi. To be probabilities, the parameters pi must satisfy the conditions 
that pi >_ 0 and ~ f = ~  pi = 1. A model of a sequence of three consecutive rolls of 
a die might be that they were all independent, so that the probability of sequence 
[ I ,  6,3] would be the product of the individual probabilities, pl P6P3. We will use 
dice throughout the early part of the book for giving intuitive simple examples of 
probabilistic modelling. 

Consider a second example closer to our biological subject matter, which is an 
extremely simple model of any protein or DNA sequence. Biological sequences 
are strings from a finite alphabet of residues, generally either four nucleotides or 
twenty amino acids. Assume that a residue a occurs at random with probability 
q,, independent of all other residues in the sequence. If the protein or DNA 
sequence is denoted X I . .  .x,, the probability of the whole sequence is then the 
product qx,qx2 . . . qx, = n:=, qx, . I  We will use this 'random sequence model' 
throughout the book as a base-level model, or null hypothesis, to compare other 
models against. 

Maximum likelihood estimation 

The parameters for a probabilistic model are typically estimated from large sets 
of trusted examples, often called a training set. For instance, the probability 
q, for amino acid a can be estimated as the observed frequency of residues in 
a database of known protein sequences, such as SWISS-PROT [Bairoch & Ap- 
weiler 1997l.We obtain the twenty frequencies from counting up some twenty 
million individual residues in the database, and thus we have so much data that 
as long as the training sequences are not systematically biased towards a pecu- 
liar residue composition, we expect the frequencies to be reasonable estimates 
of the underlying probabilities of our model. This way of estimating models is 
called maximum likelihood estimation,because it can be shown that using the fre- 
quencies with which the amino acids occur in the database as the probabilities 
q, maximises the total probability of all the sequences given the model (the like- 
lihood). In general, given a model with parameters d and a set of data D, the 
maximum likelihood estimate for 8 is that value which maximises P(D)d). This 
is discussed more formally in Chapter 11. 

When estimating parameters for a model from a limited amount of data, there 

' Strictly speaking this is only a correct model if all sequences have the same length, because 
then the sum of the probability over all possible sequences is 1; see Chapter 3. 
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is a danger of overjfitting, which means that the model becomes very well adapted 
to the training data, but it will not generalise well to new data. Observing for 
instance the three flips of a coin [tail, tail, tail] would lead to the maximum 
likelihood estimate that the probability of head is 0 and that of tail is 1. We will 
return shortly to methods for preventing overfitting. 

Conditional, joint, and marginal probabilities 

Suppose we have two dice, Dl and D2. The probability of rolling an i with die 
Dl is called P(i I Dl). This is the conditional probability of rolling i given die Dl. 
If we pick a die at random with probability P(D,), j = 1 or 2, the probability for 
picking die j and rolling an i is the product of the two probabilities, P(i,  Dj) = 

P(Dj)P(i 1 Dj). The term P(i, Dj) is called the joint probability. The statement 

applies universally to any events X and Y. 
When conditional or joint probabilities are known, we can calculate a marginal 

probability that removes one of the variables by using 

where the sums are over all possible events Y .  

Exercise 

1.1 Consider an occasionally dishonest casino that uses two kinds of dice. Of 
the dice 99% are fair but 1% are loaded so that a six comes up 50% of the 
time. We pick up a die from a table at random. What are P(sixlDloaded) 
and P(six 1 Dfair)? What are P(six, Dloaded) and P (six, Dfair)? What is 
the probability of rolling a six from the die we picked up? 

Bayes' theorem and model comparison 

In the same occasionally dishonest casino as in Exercise 1 . I ,  we pick a die at 
random and roll it three times, getting three consecutive sixes. We are suspicious 
that this is a loaded die. How can we evaluate whether that is the case? What we 
want to know is P(Dloaded13 sixes); i.e. the posteriorprobability of the hypothesis 
that the die is loaded given the observed data, but what we can directly calculate 
is the probability of the data given the hypothesis, P(3 sixes(Dloaded), which is 
called the likelihood of the hypothesis. We can calculate posterior probabilities 
using Bayes' theorem, 



1.3 Probabilities and probabilistic models 7 

The event 'the die is loaded' corresponds to X in (1.2) and '3 sixes' corresponds 
to Y ,  so 

We were given (see Exercise 1.1) that the probability P(Dloaded) of picking a 
loaded die is 0.01, and we know that the probability P(3 sixeslDloaded) of three 
sixes given it is loaded is 0 . 5 ~  = 0.125. The total probability of three sixes, 
P(3 sixes), is just P(3 sixes1 Dloaded) P(  Dloaded) + P(3 sixes I Dfair) P(Dfair). NOW 

So in fact, it is still more likely that we picked up a fair die, despite seeing three 
successive sixes. 

As a second, more biological example, let us assume we believe that, on aver- 
age, extracellular proteins have a slightly different amino acid composition than 
intracellular proteins. For example, we might think that cysteine is more com- 
mon in extracellular than intracellular proteins. Let us try to use this information 
to judge whether a new protein sequence x = X I .  . .x, is intracellular or extra- 
cellular. To do this, we first split our training examples from SWISS-PROT into 
intracellular and extracellular proteins (we can leave aside unclassifiable cases). 

We can now estimate a set of frequencies q? for intracellular proteins, and a 
corresponding set of extracellular frequencies 9:'. To provide all the necessary 
information for Bayes' theorem, we also need to estimate the probability that any 
new sequence is extracellular, pext, and the corresponding probability of being 
intracellular, pint. We will assume for now that every sequence must be either 
entirely intracellular or entirely extracellular, so pint = 1 - pext. The values pext 

and pint are called the prior probabilities, because they represent the best guess 
that we can make about a sequence before we have seen any information about 
the sequence itself. 

We can now write P(x lext) = ni 9:;' and P(x lint) = ni g?. Because we 
are assuming that every sequence must be extracellular or intracellular, p(x) = 

pext P(x lext) + p i n t ~ ( x  lint). By Bayes' theorem, 

P(ext1x) is the number we want. It is called the posterior probability that a 
sequence is extracellular because it is our best guess afrer we have seen the data. 

Of course, this example is confounded by the fact that many transmembrane 
proteins have intracellular and extracellular components. We really want to be 
able to switch from one assignment to the other while in the sequence. That 
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requires a more complex probabilistic model which we will see later in the book 
(Chapter 3). 

Exercises 
1.2 How many sixes in a row would we need to see in the above example 

before it was most likely that we had picked a loaded die? 
1.3 Use equation (1.1) to prove Bayes' theorem. 
1.4 A rare genetic disease is discovered. Although only one in a million 

people carry it, you consider getting screened. You are told that the ge- 
netic test is extremely good; it is 100% sensitive (it is always correct if 
you have the disease) and 99.99% specific (it gives a false positive result 
only 0.01 % of the time). Using Bayes' theorem, explain why you might 
decide not to take the test. 

Bayesian parameter estimation 

The concept of overfitting was mentioned earlier. Rather than giving up on a 
model, if we do not have enough data to reliably estimate the parameters, we can 
use prior knowledge to constrain the estimates. This can be done conveniently 
with Bayesian parameter estimation. 

As well as using Bayes' theorem for comparing models, we can use it to esti- 
mate parameters. We can calculate the posterior probability of any particular set 
of parameters 6 given some data D using Bayes' theorem as 

Note that since our parameters are usually continuous rather than discrete 
quantities, the denominator is now an integral rather than a sum: 

There are a number of issues that arise concerning (1.3). One problem is 'what 
is meant by P(8)?' Where do we obtain a prior distribution over parameters? 
Sometimes there is no good rationale for any specific choice, in which caseflat 
(uniform) or uninformative priors are normally chosen, i.e. ones that are as in- 
nocuous as possible. In other cases, we will wish to use an informative P(6). 
For instance, we know a priori that the amino acids phenylalanine, tyrosine, and 
tryptophan are structurally similar and often evolutionarily interchangeable. We 
would want to use a P(8) that tends to favour parameter sets that give similar 
probabilities to these three amino acids over other parameter sets that assign them 
very different probabilities. These issues are examined in detail in Chapter 5. 

Another issue is how to use (1.3) to estimate good parameters. One approach 
is to choose the parameter values for 8 that maximise P(8ID). This is called 
maximum a posteriori or MAP estimation. Note that the denominator of (1.3) 
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is independent of the specific value of 0, and so MAP estimation corresponds to 
maximising the likelihood times the prior. If the prior is flat, then MAP estimation 
is the same as maximum likelihood estimation. 

Another approach to parameter estimation is to choose the mean of the pos- 
terior distribution as the estimate, rather than the maximum value. This can 
be a more complicated operation, requiring that the posterior probability can 
either be calculated analytically or can be sampled. A related approach is not 
to choose a specific set of parameters at all, but instead to evaluate the quan- 
tity of interest based on the model at many or all different parameter values by 
integration, weighting the results according to the posterior probabilities of the 
respective parameter values. This approach is most attractive when the evalua- 
tion and weighting can be done analytically - otherwise it can be hard to obtain 
a valid result unless the parameter space is very small. 

These approaches are part of a field of statistics called Bayesian statistics [Box 
& Tiao 19921. The subjectiveness of issues like the choice of prior leads some 
people to be wary of Bayesian methods, though the validity of Bayes' theorem 
per se for manipulating conditional probabilities is not in question. We do not 
have a rigid attitude; we use both maximum likelihood and Bayesian methods at 
different points in the book. However, when estimating large parameter sets from 
small amounts of data, we believe that Bayesian methods provide a consistent 
formalism for bringing in additional information from previous experience with 
the same type of data. 

Example: Estimating probabilities for a loaded die 

To illustrate, let us return to our examples with dice. Assume we are given a die 
that we expect will be loaded, but we don't know in what way. We are allowed to 
roll it ten times, and we have to give our best estimates for the parameters pi. We 
roll 1, 3,4, 2,4, 6, 2, 1, 2, 2. The maximum likelihood estimate for B5, based on 
the observed frequency, is 0. If this were used in a model, then a single observed 
5 would rule out the dataset from coming from this die. That seems too harsh. 
Intuitively, we have not seen enough data to be sure that this die never rolls a five. 

One well-known approach to this problem is to adjust the observed frequen- 
cies used to derive the probabilities by adding some fake extra counts to the true 
counts observed for each outcome. An example would be to add one to each ob- 
served number of counts, so that the estimated probability $5 of rolling a five is 
now $. The extra count for each class is called a pseudocount. Using pseudo- 
counts corresponds to a posterior mean approach using Bayes' theorem and a 
prior from the Dirichlet family of distributions (see Chapter 11 for more details). 
Different sets of pseudocounts correspond to different prior assumptions about 
what sort of probabilities a die will have. If in our previous experience most dice 
were close to being fair, then we might add a lot of pseudocounts; if we had pre- 
viously seen many very biased dice in this particular casino, we would believe 
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ML MAP 

Figure 1.2 Maximum likelihood estimation (ML) versus maximum a pos- 
teriori (MAP) estimation of the probability ps (x axis) in Example 1.1 with 
five pseudocounts per category. The three curves are artificially normalised 
to have the same maximum value. 

more strongly the data that we collected on this particular example, and weight 
the pseudocounts less. Of course, if we collect enough data, the true counts will 
always dominate the pseudocounts. 

In Figure 1.2 the likelihood P(Dlf9) is shown as a function of p5, and the 
maximum at 0 is evident. In the same figure we show the prior and posterior 
distributions with five pseudocounts per category. The prior distribution of p5 
implied by the pseudocounts, P ( 8 ) ,  is a Dirichlet distribution. Note that the 
posterior P(O1 D) is asymmetric; the posterior mean estimate of p5 is slightly 
more than the MAP estimate. 0 

Exercise 
1.5 In the above example, what is our maximum likelihood estimate for p;?, 

the probability of rolling a two? What is the Bayesian estimate if we add 
one pseudocount per category? What if we add five pseudocounts per 
category? 

1.4 Further reading 

Available textbooks on computational molecular biology include Introduction 

to Computational Biology by Waterman [1995], Bioinfomatics - The Machine 

Learning Approach by Baldi & Brunak [I9981 and Sankoff & Kruskal's Time 
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Warps, String Edits, and Macromolecules [1983]. For readers with no molecular 
biology background, we recommend Molecular Biology of the Gene by Watson et 
al. [I9871 as a readable, though encyclopedic, undergraduate-level introduction 
to molecular genetics. Introduction to Protein Structure by Branden & Tooze 
[I9911 is a beautifully illustrated guide to the three-dimensional structures of 
proteins. MacKay [I9921 has written a persuasive introduction to Bayesian prob- 
abilistic modelling; a more elementary introduction to some of the attractive ideas 
behind Bayesian methods is Jefferys & Berger [1992]. 
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