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I. CONTINUOUS TIME RANDOM WALK

The continuous time random walk (CTRW) was introduced by Montroll and Weiss1.

Unlike discrete time random walks treated so far, in the CTRW the number of jumps n

made by the walker in a time interval (0, t) is a random variable. Considers a random walker

which starts on the origin at time t = 0. It stays fixed to its position until time t1, it then

makes a jump to ∆r1, the particle waits on ∆ri until time t2 > t1 when its jumps to a new

location ∆r1+∆r2, the process is then renewed. The dots on the time axis {t1, t2, · · ·} define

the times of jumping events. The times τ1 = t1 − 0, τ2 = t2 − t1 etc are called waiting times.

In the CTRW the waiting times {τ1, τ2...} and the displacements {∆r1, ∆r2...} are mutually

independent identically distributed random variables. The waiting times have a common

PDF denoted with ψ(τ) and the displacements also have a common PDF f(∆r). Such a

random walk is sometimes called a decoupled CTRW, since the jump lengths are statistically

independent of the waiting times. The process is a renewal process and mathematics of

previous chapter can be used to analyze the CTRW process.

The total displacement of the particle at time t is

r =
n∑

i=1

∆ri (1)

and n is the random number of jumps in the interval (0, t). Let P (t; n) be the probability

for n jump events in time t. One of our goals is to calculate P (r, t), the PDF of finding the

particle on r at time t. We obviously have

P (r, t) =
∞∑

n=0

P (t; n)Pn (r) , (2)

and Pn (r) is the PDF of finding the particle at r after n jumps. If the random walk is on a

lattice then P (r, t) and Pn(r) are probabilities of finding the particle at lattice point r, not

PDFs.
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We have obtained already the Laplace t → s transform of P (t; n) in the context of renewal

theory

P̂ (s; n) =
1 − ψ̂ (s)

s
ψ̂n (s) (3)

where

ψ̂ (s) =
∫ ∞

0
e−stψ (t) dt. (4)

We have also obtained the Fourier transform of Pn (r) in the context of discrete time random

walks

f̃ (k) = f̃n (k) . (5)

Here we use the d dimensional Fourier transform, with integration over all space

f̃ (k) =
∫

V
eik∆rf (∆r) d∆r. (6)

For the case of lattice random walks proper replacement of Fourier integrals with Fourier

series must be made.

Using Eqs. (2,3,5) we have the Fourier–Laplace transform of P (r, t)

ˆ̃P (k, t) =
∞∑

n=0

1 − ψ̂ (s)

s
ψ̂n (s) f̃n (k) (7)

thus obtaining

ˆ̃P (k, s) =
1 − ψ̂ (s)

s

1

1 − ψ̂ (s) f̃ (k)
(8)

where we used the inequality |ψ̂ (s) f̃ (k) | ≤ 1 to justify the convergence of the series. Eq.

(8) is called the Montroll–Weiss equation and is an exact solution in Fourier–Laplace space.

4.1 Consider the CTRW on a one dimensional lattice, where jumps are to nearest neighbors

with equal probability, when ψ (τ) = exp (−Λt). Show that the probability of finding

the particle on lattice site m is

P (m, t) =
∞∑

n=0

(Λt)n e−Λt

n!

(
1

2

)n n!
(

n−m
2

)
!
(

n+m
2

)
!

(9)
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when the random walk started on origin m = 0. Show that this solution has a Gaussian

behavior for long times. Also use Fourier inversion and the integral

1

2π

∫ π

−π
eikm+Λt cos kdk = Im (λt) (10)

where Im (x) is a modified Bessel function, to show that

P (m, t) = e−ΛtIm (Λt) . (11)

A. Moments

If the averaged displacement in a single jump is non-zero ⟨∆r⟩ =
∫
V ∆rf (∆r) d∆r ̸= 0

we expect a net drift ⟨r⟩ ̸= 0. This displacement can be found based on the Montroll–Weiss

equation using the small k expansion

ˆ̃P (k, s) ∼ 1 + ik⟨r(s)⟩ + · · · (12)

hence

−i
∂

∂k
P (k, s) |k=0 = ⟨r (s)⟩. (13)

We find using Eq. (8)

⟨r (s)⟩ =
ψ̂ (s)

s
[
1 − ψ̂ (s)

]⟨∆r⟩, (14)

where the identity −i∂f̃ (k)/∂k|k=0 = ⟨∆r⟩ was used. We recall from previous chapter that

the Laplace transform of the averaged number of jumps is

⟨n(s)⟩ =
∞∑

n=0

nP (s; n) =
1 − ψ̂(s)

s

∞∑

n=0

nψ̂n(s) =
ψ(s)

s
[
1 − ψ̂ (s)

] . (15)

And hence

⟨r (s)⟩ = ⟨n̂ (s)⟩⟨∆r⟩, (16)
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thus as expected the mean displacement of the random walker is the average number of

steps times the average displacement of a single step, namely in the time domain ⟨r (t)⟩ =

⟨n(t)⟩⟨∆r⟩.

A similar analysis for the mean square displacement using

⟨r2 (s)⟩ = − d2

dk2

˜̂P (k, s) |k=0 (17)

yields

⟨r2 (s)⟩ = ⟨n̂ (s)⟩⟨∆r2⟩ + ⟨ ˆn(n − 1)(s)⟩⟨∆r⟩2 (18)

where

⟨ ˆn(n − 1)(s)⟩ =
∞∑

n=0

n(n − 1)P (s; n) =
1 − ψ̂(s)

s

∞∑

n=0

n(n − 1)ψ̂n(s) =

1 − ψ̂(s)

s
ψ̂2(s)

d2

dψ̂(s)2

1

1 − ψ̂(s)
= 2

ψ̂2 (s)

s
[
1 − ψ̂ (s)

]2 . (19)

Eq. (18) tells us that there are two types of contributions to the mean square displace-

ment, the first stemming from fluctuations in the length of the individual microscopical

displacements, the other from fluctuations in the number of displacements.

We now assume that

ψ̂ (s) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − s⟨τ⟩ Case1

1 − sαA Case2

(20)

when s → 0. Here usual ⟨τ⟩ is the average waiting time and for case 2 ψ (τ) ∝ τ−1−α with

0 < α < 1 hence the average waiting time is infinite.

The small s behavior of the displacement is

⟨r (s)⟩ ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⟨∆r
s2⟨τ⟩⟩ Case1

⟨∆r⟩
As1+α Case2

(21)
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Hence according to the Tauberian theorem

⟨r (s)⟩ ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⟨∆r⟩ t
⟨τ⟩ Case1

⟨∆r⟩ tα

AΓ(1+α) Case2.

(22)

The drift is anomalous for the case when the averaged waiting diverges.

We now consider the mean square displacement for unbiased CTRW, when the averaged

displacement is zero ⟨∆r⟩ = 0. Then we have ⟨r2(s)⟩ = ⟨n (s)⟩⟨∆r2⟩ and

⟨r2 (t)⟩ ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⟨∆r2

⟨τ⟩ ⟩t Case1

⟨∆r⟩
AΓ(1+α) t

α Case2.

(23)

We see that when waiting time PDF has a long tailed PDF, the diffusion is anomalous, and

slower than the normal diffusion case. Such a diffusion process is called sub-diffusion, which

is not rare in Physical systems.

II. PHYSICAL EXAMPLE FOR ψ (τ)

The CTRW is a stochastic model for which ψ (τ) and f (∆r) serve as input functions. To

relate the model to physical behavior we have to obtain further insight on these two functions.

The main difficulty is to justify the power law tailed waiting time PDF ψ (τ) ∝ τ−1−α. There

are two types of approaches to gain understanding on the meaning of ψ (τ). The first case is

for random walks in disordered materials, a case relevant for example for transport in doped

semi-conductors. The second case, considers experiments where the behavior of the random

walker mimics very closely the dynamics of the CTRW.

Polymer physics Wong et al studied the motion of colloidal tracer particle in an en-

tangled F-actin filament networks (F-actin is a semi-flexible polymer). These networks,

embedded in water, have a typical mesh size ξ of order 100 nm - 1 µm. These networks
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of polymers are important for cellular activity, and as such have attracted considerable re-

search efforts. The radius of the bead is a and importantly it can be controlled by the

experimentalist. When a ≪ ξ the small bead does not interact with the polymer network

and the the bead exhibits a normal Brownian motion. One can imagine this situation as

an atom diffusing in a ball of soap (water) and in this soap we have some spaghetti, the

atom can easily diffuse around the obstacles (i.e. the spaghetti or the polymers) and hence

it motion is still Brownian. When a > ξ, the bead cannot penetrate through the network,

in this case it is localized in space (with some small thermal fluctuations). The interesting

case is a ≃ ξ. The authors6 define waiting time PDFs ψ (τ) in local cages composed of actin

filaments. Using video tracking techniques they show that ψ (τ) ∼ τ−1−α where the power

law behavior is over three orders of magnitude in time and five orders in the PDF. They

then show that the mean square displacement of the bead particles behave like ⟨x2⟩ ∼ tα

(the measurement is along one coordinate). Such a behavior is predicted by the unbiased

CTRW. Interestingly the authors show (very roughly) that

α ≃

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − a
ξ a/ξ < 1

0 a/ξ > 1

(24)

Thus when a/ξ → 0 we have normal diffusion and α = 1, and as mentioned then the bead

interacts only with the water. In the other limit a/ξ > 0 we have localization behavior. A

detailed microscopic theory which could explain the transition between these two behaviors

is still missing.

III. CTRW PROPOGATOR

We now consider the one dimensional CTRW, with displacements ∆x (instead of ∆r)

whose PDF is f(∆x). We are interested in P (x, t) the probability of finding the particle on
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x at time t in the limit of long times. Extension of our results to higher dimensions is in

principle straight forward (see8). We will assume for simplicity that the variance of f(∆x)

is finite, and its mean is zero. The variance is denoted with σ2 =
∫∞
−∞(∆x)2f(∆x)d∆x.

Before treating the asymptotic in detail let us give some hand waiving ideas on the long

time behavior of the problem. As we mentioned already

P (x, t) =
∞∑

n=0

Pn(t)P (n; x). (25)

In the limit of long times we expect that the number of jumps is large hence since only

trajectories with large n are important, and position of particle after n steps is x =
∑n

i=0 ∆xi,

we expect that P (n; x) is Gaussian. Hence we make the replacement

P (n; x) → 1√
2πσ2n

exp

(

− x2

2σ2n

)

≡ G(n, x) (26)

which is the Gaussian central limit theorem. The number of steps is fluctuating according

to our findings in previous chapter on fractal renewal theorem. If the waiting time PDF

is moment less, then we found in the limit of long times that the probability of making n

jumps is described using the inverse Lévy function

P (n; t) → 1

α

t

n1+1/α
lα,1,1

(
t

n1/α

)
≡ Ilα (t; n) (27)

when A = 1 for simplicity. Hence we expect in the limit of long times

P (x, t) ∼
∫ ∞

0
dnIlα(t; n)G(n, x). (28)

The equation means that after n jumps the random position is a Gaussian random variable,

however the number of jumps is random and described by the inverse Lévy PDF, hence we

must average the Gaussian over all possible number of steps (i.e. integrate over n). Eq. (28)

is an integral transformation, it maps the Gaussian propogator, to the propogator of the
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CTRW with α < 1. This transformation is sometimes called inverse Lévy transform which

is important for anomalous transport.

A second method is to consider the problem in Fourier Laplace space. Starting with the

Montroll–Weiss equation we use a small s small k expansion of the exact solution. We use

f(k) = 1−σ2k2/2+ · · · when k → 0 namely use the assumption that the mean jump length

is zero. And also use

ψ(s) ∼ 1 − sα (29)

when s → 0 and find

P (k, s) =
1 − ψ(s)

s

1

1 − f(k)ψ(s)
∼ sα−1

sα + σ2k2

2

. (30)

This long wave length approximation is somewhat ad-hoc at this stage. The claim is that

the inverse Fourier–Laplace transform of

sα−1

sα + σ2k2

2

yields an asymptotic approximation for P (x, t) in the limit of long times. We assume that

sα and σ2k2

2 are of the same order of magnitude. The main idea behind such small (s, k)

expansions is that only a single scale of the jump length PDF, the variance σ2, controls the

long time behavior of P (x, t). On the other hand the rather general small k expansion of

f(k) is for a symmetric f(∆x) is

f(k) = 1 − k2σ2

2
+

m4k4

4!
− m6k6

6!
+ · · · (31)

And we assumed that moments m4 m6 etc are irrelevant parameters of the problem, namely

in the long time limit P (x, t) does not depend on this information. Why this is true is

investigated soon. However assuming that all the assumptions we made are correct we have

P (k, s) ∼ sα−1

sα + σ2k2

2

=
∫ ∞

0
sα−1e−nsα

e−
nk2σ2

2 dn. (32)
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Now sα−1e−msα
is the Laplace pair of of the inverse Lévy PDF Ilα(t; n), and e−

nk2σ2

2 is the

Fourier pair of the Gaussian G(n; x) hence Eq. (32) has the same meaning as Eq. (28).

A. Why are m4 m6 etc irrelevant?

Consider the fourth moment of the displacement of the particle

⟨x4(s)⟩ =
1 − ψ(s)

s

d4

dk4

1

1 − ψ(s)f(k)
|k=0 (33)

Using (31) some algebra will convince the reader that

⟨x4(s)⟩ =
1

s

[
6γ2(s)σ4 + γ(s)m4

]
(34)

where γ(s) = ψ(s)/(1 − ψ(s)). As expected ⟨x4(s)⟩ depends on m4 and σ2. In the limit of

long times corresponding to small s we have using Eq. (29)

⟨x4(s)⟩ ∼ 1

s

[
6s−2ασ4 + s−αm4

]
. (35)

The m4s1−α term is a small term and hence can be neglected, we have

⟨x4(s)⟩ ∼ 1

s
6s−2ασ4, (36)

which is independent of m4. We see that m4 is not relevant for the calculation of ⟨x4(t)⟩

in the limit of long times. Note that ⟨x4(t)⟩ ∝ t2α and hence the first non zero moments

exhibit simple scaling ⟨x2(t)⟩2 ∝ ⟨x4(t)⟩ ∝ t2α or in other words x scales with tα/2. Using

a similar method one can show that the sixth moment ⟨x6(s)⟩ does not depend on m4 and

m6 (it is a trivial fact that the ⟨x6(s)⟩ does not depend on m8 etc). Hence m2n with n > 2

are not important, as we assumed in previous sub-section.

More precise statement is that the expression in (32) yields the moments of the random

walk ⟨x2(s)⟩, ⟨x4(s)⟩ etc when s is small. To see this notice the expansion

sα−1

sα + σ2k2

2

=
1

s

[

1 − σ2k2

2sα
+
σ4k4

4s2α
· · ·
]
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which gives the correct small s behavior of the moments ⟨x2(s)⟩, ⟨x4(s)⟩ etc.

B. The Green Function

We now find the long time behavior of P (x, t) using first the inverse Fourier transform

P (x, s) ∼ 1

2π

∫ ∞

−∞

sα−1

sα + σ2k2

2

dk. (37)

Using Cauchy integral formula

P (x, s) =
1

σ

sα/2−1

√
2

e−
√

2sα |x|
σ . (38)

This can be rewritten

P (x, s) =
1

|x|α − d

ds
e−

√
2sα/2 |x|

σ . (39)

Noting that e−
√

2sα/2 |x|
σ is the Laplace pair of the one sided Lévy PDF and that a derivative

with respect to s yields a multiplication in t space we have

P (x, t) =
t

|x|α l
α/2,

√
2|x|
σ ,1

(t) =
1

α

(
σ√
2

)2/α
t

|x|1+2/α
lα/2,1,1

⎡

⎢⎣
tσ2/α

(√
2|x|

)2/α

⎤

⎥⎦ . (40)

Or rewriting we may use the inverse Lévy function

P (x, t) ∼
√

2

σ
Ilα/2

(

t;

√
2|x|
σ

)

. (41)

We see that in the limit of long time P (x, t) is expressed in terms of a scaling function

P (x, t) → 1

tα/2
f

(
x2/α

t

)

.

In particular the behavior on the origin is slower than normal diffusion case, since P (x =

0, t) ∝ t−α/2. When α = 1 we recover from Eq. (41) the Gaussian PDF, for α < 1 we



11

see that Lévy central limit theorem gives the correct description of the anomalous diffusion

process.
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