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Modeling the Stochastic Gating
of Ion Channels

Gregory D. Smith

In previous chapters we have seen several kinetic diagrams representing various molec-
ular states and transitions between these states due to conformational changes and the
binding or unbinding of ligands. Up to this point we have assumed a large number of
molecules and written rate equations consistent with these transition-state diagrams.
But how should we interpret a transition-state diagram when we are considering only
a single molecule or a small number of molecules? The short answer to this question
is that transition rates can be interpreted as transition probabilities per unit time.

11.1 Single–Channel Gating and a Two-State Model

The time course of voltage changes in a whole cell is the result of the average behavior
of many individual channels. Our understanding of individual channel gating comes
largely from experiments using the patch clamp technique (see Figure 11.1). For exam-
ple, typical measurements from a so-called on-cell patch of T-type calcium currents in
guinea pig cardiac ventricular myocytes are shown in the middle panel of Figure 11.2.
The small current deviations in the negative direction indicate the opening of individual
T-type calcium channels gating in response to a command membrane voltage stepped
from −70 mV to −20 mV (top panel). Notice that two conductance states of the channel
are visable: a closed state with no current flowing and an open state with unitary cur-
rent of ≈ 10−12 amperes (1 picoampere or 1 pA). While transitions between these two
conductance states are random in time, the mean of several hundred records (bottom
panel of Figure 11.2) smoothes out these current fluctuations and demonstrates that on
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Figure 11.1 Four methods of measuring electrical responses in cells with the patch clamp
technique. In the patch technique, a pipette with an opening of ≈ 1 µm is used to make a
high–resistance (“gigaohm” = 109 ohm) seal onto a cellular membrane. In the on-cell patch
configuration all the current into the pipette flows directly through the patch, which can con-
tain as few as one or two ion channels. In the whole–cell configuration, the patch is broken
and a more accurate whole cell recording can be made as compared with a relatively leaky
sharp electrode puncture. In a perforated patch configuation, an ionophore such as nystatin is
introduced into the pipette in order to allow whole–cell-like access while minimizing exchange
of the cell contents with the contents of the pipette. Alternatively, patches of membrane can be
torn off, leading to inside-out and outside-out patches that can be studied in isolation. Adapted
from Hille (2001).

average the stochastically gating channel activates and subsequently inactivates with
time constants of ≈ 5 ms and 50 ms, respectively. Interestingly, the average dynamics of
individual T-type calcium channels is strikingly similar to “whole cell” measurements
of the activation and inactivation of T-type calcium currents.

11.1.1 Modeling Channel Gating as a Markov Process

The stochastic gating of a single ion channel can be modeled as a continuous-time
Markov process. Consider the simple transition-state diagram encountered first in
Chapter 1, the kinetic scheme for ion channel with two states, one closed (C) and
the other open (O),

C (closed)

k+

⇀↽

k−

O(open). (11.1)
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Figure 11.2 On-cell patch clamp
measurements of T-type calcium
currents in guinea pig cardiac
ventricular myocytes. The upper
recordings show currents due to
one (or a few) stochastically gating
single channels when the com-
mand voltage is stepped from −70
mV to −20 mV. The lower plot
is an average of several hundred
such records that shows rapid
activation followed by slow in-
activation, proportional to macro-
scopic T-type calcium currents
measured in whole–cell configura-
tion. Reprinted from Hille (2001).

Define s to be a random variable taking values s ∈ {C, O} corresponding to these two
states, and write Prob{s $ i, t} (or for short, Pi(t)) to represent the probability that
s(t) $ i; that is, the molecule is in state i at time t. Because the molecule must always
be in one of the two states, total probability must be conserved and we have

PC(t) + PO(t) $ 1.

Now consider the possibility that the two-state ion channel is in state C at time t.
If this is the case, then the rate k+ (e.g., with units of ms−1) is related to the probability
that in a short interval of time (#t) the two-state ion channel will open. The relationship
is given by

k+#t $ Prob{s $ O, t + #t|s $ C, t}, (11.2)

where k+#t is dimensionless (a pure number) and Prob{s $ O, t+#t|s $ C, t} is a short-
hand notation for the probability, given that the channel is closed at time t, of a C → O

transition occurring in the interval [t, t + #t]. Multiplying by PC(t), the probability that
the ion channel is indeed in state C, we find that k+PC(t)#t is the probability that the
transition C → O actually occurs.

The transition-state diagram (11.1) indicates two possible ways for the ion channel
to enter or leave the closed state. Accounting for both of these, we have

PC(t + #t) $ PC(t) − k+PC(t)#t + k−PO(t)#t.
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Writing a similar equation relating PO(t + #t) and PO(t) and taking the limit #t → 0
gives the system of ODEs

dPC

dt
$ −k+PC + k−PO, (11.3)

dPO

dt
$ +k+PC − k−PO. (11.4)

Because conservation of probability ensures that PC(t) $ 1 − PO(t), (11.3) can be
eliminated to give

dPO

dt
$ k+ (1 − PO) − k−PO.

Note that the similarity of this equation to (1.4), the kinetic equation derived in
Chapter 1, is not accidental. The equation governing changes in probabilities for a
single molecule always has the same form as the rate equation for a large number of
molecules.

11.1.2 The Transition Probability Matrix

From our analysis of the two-state ion channel above, we know that for a channel
closed at time t, k+#t is the probability that it undergoes a transition and opens in the
time interval [t, t + #t], provided that #t is small. By conservation, we also know that
the probability that the channel remains closed during the same interval is 1 − k+#t.
Because a similar argument applies when the channel is open at time t, we can write
the transition probability matrix

Q $
[

Prob{C, t + #t|C, t} Prob{C, t + #t|O, t}
Prob{O, t + #t|C, t} Prob{O, t + #t|O, t}

]

$
[

1 − k+#t k−#t

k+#t 1 − k−#t

]

, (11.5)

where the elements of Qij (row i, column j) correspond to the transition probability
from state j to state i, and conservation of probability ensures that all the columns sum
to one, that is, for each column j,

∑

i

Qij $ 1. (11.6)

The transition probability matrix is especially useful when we write the current state
of the channel as the vector

P⃗(t) $
[

Prob{C, t}
Prob{O, t}

]

. (11.7)

Using this notation, the state of the channel at t+#t is given by the matrix multiplication

P⃗(t + #t) $ QP⃗(t). (11.8)
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For example, if the channel is known to be closed at time t, then

P⃗(t) $
[

1

0

]

,

and the distribution of probability after one time step is

P⃗(t + #t) $
[

1 − k+#t k−#t

k+#t 1 − k−#t

] [
1

0

]

$
[

1 − k+#t

k+#t

]

.

Applying (11.8) iteratively, we see that if the channel is closed at time t, the probability
that it is closed or open at time t + 2#t is given by

P⃗(t + 2#t) $ Q
[
QP⃗(t)

]
, $ Q2P⃗(t)

or more generally,

P⃗(t + n#t) $ QnP⃗(t). (11.9)

This iterative procedure can be used to calculate the evolution of the probability that
the two-state channel is in an open or closed state. It amounts to using Euler’s method
to integrate (11.3) and (11.4).

11.1.3 Dwell Times

Using the transition probability matrix, it is possible to derive an expression for the
average amount of time that the channel remains in the open or closed state, i.e., the
open and closed dwell times. We have already seen that if a channel is closed at time t,
the probability that it remains closed at time t + #t is 1 − k+#t. The probability that
the channel remains closed for the following time step as well is thus

(
1 − k+#t

)2. In
general, we can write

Prob{C, [t, t + n#t]|C, t} $
(
1 − k+#t

)n
. (11.10)

This expression is actually much simpler than (11.9) because here we are insisting that
the channel remain closed for the entire interval [t, t + n#t], while (11.9) accounts for
the possibility that the channel changes states multiple times. If we define τ $ n#t, we
can rewrite (11.10) as

Prob{C, [t, t + τ]|C, t} $
(

1 − k+τ

n

)n

,

which is an approximate expression that becomes more accurate (for fixed τ) as #t → 0
and n → ∞ simultaneously. Taking this limit and using

lim
n→∞

(
1 − α

n

)n

$ e−α,

we obtain

Prob{C, [t, t + τ]|C, t} $ e−k+τ . (11.11)
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Thus, the probability that a channel closed at time t remains closed until t + τ is a
decreasing exponential function of τ.

In order to complete our calculation of the closed dwell time for the two-state
channel, we must consider the probability that a channel closed at time t stays closed
during the interval [t, t+τ] and then opens for the first time in the interval [t+τ, t+τ+#t].
This probability is given by

Prob{C, [t, t + τ]|C, t}Prob{O, t + τ + #t|C, t + τ} $ e−k+τk+#t.

Thus, the average closed time will be given by

⟨τC⟩ $
∫ ∞

0
τe−k+τk+dτ $ 1

k+ ,

where we have used
∫ ∞

0
te−tdt $ 1.

Similarly, the average open time of the two-state channel model is

⟨τO⟩ $
∫ ∞

0
τe−k−τk−dτ $ 1

k− .

11.1.4 Monte Carlo Simulation

The elements Qij of the transition probability matrix represent the probability of mak-
ing a transition from state j to state i in a time step of duration #t. A simple method for
simulating the transitions of a two-state channel is based on (11.6). Because conserva-
tion of probability ensures that each column of Q will sum to unity, we can divide the
interval [0,1] into regions, each corresponding to a possible change of state (or lack of
change of state). Next, we choose a random number Y uniformly distributed on the in-
terval [0,1], and make a transition (or not) based upon the subinterval in which Y falls.
For example, let us return to the transition probability matrix for the two-state chan-
nel given by (11.5). If the current state is O (open), then a transition to the closed state
occurs if 0 ≤ Y < k−#t, while the channel remains open if k−#t ≤ Y ≤ 1, an interval of
length 1−k−#t. Similarly, if the channel is closed, it remains closed if 0 ≤ Y < 1−k+#t,
and a transition to the open state occurs if 1 − k+#t ≤ Y ≤ 1.

Several example simulations of stochastic gating of a two-state channel model using
the Monte Carlo method are shown in Figure 11.3. By comparing open probabilities and
dwell times in the three simulations shown, one can see how the transition probabilities
k+ and k− lead to distinct channel kinetics. In Exercise 10 the reader can use the Monte
Carlo method to simulate a more complicated model, the four–state GLUT transporter
model discussed in Section 3.1.
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Figure 11.3 A Monte Carlo simulation of the two-state ion channel. (A) k+ $ 0.1/ms, k− $
0.1/ms, giving an equilibrium open probability (dotted lines) of 0.5. (B) k+ changed to 0.3/ms,
and now the equilibrium open probability is 0.75. (C) Transition probabilities increased by
factor of 5 (k+ $ 1.5/ms, k− $ 0.5/ms). Note that average open time and average close time
are shorter in this case, as evidenced by many more transitions between states.

11.1.5 Simulating Multiple Independent Channels

The gating of multiple independent channels can be simulated in one of several ways.
An obvious possible method for simulating a small number of independent two-state
ion channels is to implement N Markov variables with identical transition probability
matrices given by (11.5).

Under the assumption of identical and independent channels, an alternative
method is to simulate a single Markov process that accurately tracks the number of
open channels. Note that for an ensemble of N two-state ion channels there are N + 1
possibilities for the number of open channels (i.e., {0, 1, 2, . . . , N−2, N−1, N}) and thus
N + 1 distinguishable states for the ensemble. If we label these states S0 through SN,
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we can write the transition-state diagram

S0

Nk+

⇀↽

k−

S1

(N − 1) k+

⇀↽

2k−

S2

(N − 2) k+

⇀↽

3k−

· · ·
3k+

⇀↽

(N − 2) k−

SN−2

2k+

⇀↽

(N − 1) k−

SN−1

k+

⇀↽

Nk−

SN, (11.12)

where the factors modifying the rate constants k+ and k− account for combinatorics.
For example, the transition probability Nk+ leading out of state S0 accounts for the fact
that any one of N closed channels can open (at rate k+), resulting in one open channel
and ensemble configuration S1.

The transition probability matrix for the Markov process diagrammed in (11.12) is
tridiagonal

Q $

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 k−#t

Nk+#t D1

(N − 1)k+#t

. . .

(N − 1)k−#t

DN−1 Nk−#t

k+#t DN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.13)

where the diagonal terms are such that probability is conserved and each column sums
to 1:

D0 $ 1 − Nk+#t,

D1 $ 1 − k−#t − (N − 1)k+#t,

DN−1 $ 1 − (N − 1)k−#t − k+#t,

DN $ 1 − Nk−#t.

The reader is encouraged to implement a simulation of a small number (e.g., N $ 4)
of identical and independent two-state channels.

11.1.6 Gillespie’s Method

Both of the simulation methods described above involve iterating a transition proba-
bility matrix and can be quite cumbersome when the number of ion channels being
considered is large. Fortunately, an alternative that works well for large N has been
devised (Gillespie 1977).

Consider a single two-state ion channel obeying the transition-state diagram (11.1)
and recall that the probability that a channel closed at time t remains closed until t + τ

is an exponentially decreasing function of τ given by (11.11). Thus the closed dwell
time (τC) of the two-state channel is an exponentially distributed random variable; that
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is, the probability distribution function of τC is

Prob{τ < τC ≤ τ + dτ} $ k+e−k+τdτ.

Similarly, the open dwell time (τO) of the channel is an exponentially distributed
random variable with probability distribution function

Prob{τ < τO ≤ τ + dτ} $ k−e−k−τdτ.

Thus, we can simulate a two-state ion channel by alternately choosing open and closed
dwell times consistent with these distributions. If one has no subroutine for simulating
an exponentially distributed random variable, simply choose a uniformly distributed
random variable U on the interval [0,1] and use the relations

τC $ − 1
k+

ln U,

τO $ − 1
k−

ln U.

Gillespie’s method is much faster computationally than the Monte Carlo methods de-
scribed above. Furthermore, because there is no time step involved, the method is
exact.

Gillespie’s method becomes more involved when the transition-state diagram indi-
cates that more than one possible transition contributes to the dwell time for a given
state. This possibility is handled by first choosing an exponentially distributed random
number for the dwell time that accounts for all of the possible transitions out of the
current state (i.e., using the sum of the transition probabilities). After the length of
the dwell time in the current state is thus determined, the destination state is selected
by choosing a uniformly distributed random variable on an appropriately partitioned
interval, a process similar to the selection of transitions during Monte Carlo simulation
(see Section 11.1.4).

11.2 An Ensemble of Two-State Ion Channels

In the previous section we claimed that the equation governing changes in probabili-
ties for a single molecule has the same form as the rate equation for a large number
of molecules. This connection can be made more rigorous by specifying the number
of molecules we are considering in advance. To simplify calculations we will again
consider the two-state ion channel diagrammed in (11.1).

11.2.1 Probability of Finding N Channels in the Open State

Let us write N as the number of molecules, and let PO(n, t) and PC(n, t) be the probabilies
of having n molecules in states O and C, respectively. Because we will ultimately be
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interested in the statistics of current fluctuations, we will focus our attention on PO(n, t).
In any case, the presence of n open channels implies N − n closed channels, i.e.,

PC(n, t) $ PO(N − n, t) (0 ≤ n ≤ N).

Assume that all N molecules are independent and consider a time interval [t, t + #t]
short enough that only one molecule has appreciable probability of making a C → O

or O → C transition. During this short time interval, there are four events that can
influence PO(n, t), the probability that there are n open channels. For example, it is
possible that there are currently n open channels, and during the time interval [t, t+#t]
one of these channels closes. This probability is given by

loss− $ k−nPO(n, t)#t,

where the parameter k− is the transition probability for O → C, P0(n, t) is the probability
that there were n open channels to begin with, and the n scales this probability to
account for the fact that any one of the n independent open channels can close with
equivalent result. Similar reasoning leads to the expression

PO(n, t + #t) $ PO(n, t) + gain+ − loss+ + gain− − loss−, (11.14)

where

gain− $ k−(n + 1)PO(n + 1, t)#t,

loss+ $ k+(N − n)PO(n, t)#t,

gain+ $ k+(N − n + 1)PO(n − 1, t)#t.

To give one more example, the gain+ term in this equation represents a probability flux
due to the possibility that there are n−1 open channels and one of the closed channels
opens. This transition probability is given by k+(N − n + 1)PO(n − 1, t)#t, because any
one of the N − (n − 1) $ N − n + 1 closed channels can open with equivalent result.

Taking the limit #t → 0 of (11.14) gives the ordinary differential equation

d

dt
PO(n, t) $ k+(N − n + 1)PO(n − 1, t) − k+(N − n)PO(n, t)

+ k−(n + 1)PO(n + 1, t) − k−nPO(n, t). (11.15)

This rather complicated expression is called a master equation. It actually represents
N + 1 coupled ordinary differential equations, one for each PO(n, t) for 0 ≤ n ≤ N (all
possible values for the number of open channels).

The equilibrium solution to the master equation is N + 1 time-independent
probabilities P∞

O (n), given by the binomial distribution

P∞
O (n) $

(
N

n

)

pn(1 − p)N−n, (11.16)
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Figure 11.4 For an equilibrium ensemble of N two-state channels with open probability p, the
likelihood of observing n open channels is given by the binomial probability distribution (11.16),
with parameters N and p. The binomial probability distribution has mean Np, variance Np(1−
p), and coefficient of variation

[(
1 − p

)
/Np

]1/2. Note that as the equilibrium open probability, p,
increases the mean number of open channels shifts rightward. The N−1/2 factor in the coefficient
of variation is reflected in the narrowing of the distributions (from left to right).

where p $ k+/
(
k+ + k−)

and
(

N

n

)

$ N!
n!(N − n)!

.

Although this may not be obvious at first, in Exercise 4 the mathematically inclined
reader can use the method of substitution to confirm that the binomial distribution
satisfies a time-independent version of (11.15).

Figure 11.4 shows several binomial probability distributions with parameters N

and p varied. Given an ensemble of N two-state channels, these distributions represent
the equilibrium probability of finding n channels in the open state. In the top row,
the equilibrium open probability of p $ 0.5 results in a centered distribution: The
likelihood of observing n open channels is equal to the likelihood of observing N − n
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open channels. In the bottom row p $ 0.75, and the enhanced likelihood that channels
are open is evident in the rightward shift of the distributions.

11.2.2 The Average Number of Open Channels

The equilibrium solution to the master equation for the two-state channel given by
(11.16) is the binomial distribution, and thus the average number of open channels
at equilibrium is ⟨NO⟩∞ $ Np. But what about the time-dependence of the average
number of open channels? Because the average number of open channels is given by

⟨NO⟩ $
N∑

n$0

nPO(n, t), (11.17)

we can find an equation for d⟨NO⟩/dt by multiplying (11.15) by n and summing. This
gives

d⟨NO⟩
dt

$ k+
N∑

n$0

n(N − n + 1)PO(n − 1, t) − k+
N∑

n$0

n(N − n)PO(n, t)

+ k−
N∑

n$0

n(n + 1)PO(n + 1, t) − k−
N∑

n$0

n2PO(n, t). (11.18)

In Exercise 6 the reader can show that this equation can be reduced to

d⟨NO⟩
dt

$ k+ (N − ⟨NO⟩) − k−⟨NO⟩, (11.19)

where

N − ⟨NO⟩ $ ⟨NC⟩. (11.20)

Note that (11.19) is identical to the rate equation for a population of two-state channels
derived by other means in Chapter 1. For the duration of this chapter we will refer to
such an equation as an average rate equation. Also note that the equilibrium average
number of open (⟨NO⟩∞) and closed (⟨NC⟩∞) channels can be found by setting the
left–hand side of (11.19) to zero, that is,

⟨NO⟩∞ $ N
k+

k+ + k− $ Np, (11.21)

⟨NC⟩∞ $ N
k−

k+ + k− $ N (1 − p) , (11.22)

in agreement with our knowledge of the mean of a binomial distribution.
If we divide (11.19) by the total number of channels N, we find the average rate

equation for the fraction of open channels

d⟨fO⟩
dt

$ k+ (
1 − ⟨fO⟩

)
− k−⟨fO⟩, (11.23)
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where ⟨fO⟩ $ ⟨NO⟩/N, ⟨fC⟩ $ ⟨NC⟩/N, and (11.20) implies ⟨fO⟩ + ⟨fC⟩ $ 1. The equi-
librium fractions of open and closed channels are ⟨fO⟩∞ $ k+/

(
k+ + k−)

$ p and
⟨fC⟩∞ $ k−/

(
k+ + k−)

$ 1 − p. We thus see explicitly for a two-state channel that the
master equation implies an average rate equation of the sort introduced in Chapter 2.
This is true in general.

11.2.3 The Variance of the Number of Open Channels

One advantage of beginning with a master equation is that in addition to the average
rate equation, an evolution equation for the variance in the number of open channels
can be derived. The variance in the number of open channels is defined as

σ2
NO

$ ⟨(NO − ⟨NO⟩)2⟩ $
N∑

n$0

(n − ⟨NO⟩)2 PO(n, t). (11.24)

Similarly, the variance in the number of closed channels is

σ2
NC

$ ⟨(NC − ⟨NC⟩)2⟩ $
N∑

n$0

(n − ⟨NC⟩)2 PC(n, t). (11.25)

Again, we are ultimately interested in the statistics of current fluctuations, so we focus
on σ2

NO
. For the two-state channel under consideration, it is shown in Exercise 8 that

these quantities are equal.
Beginning with (11.24) and the master equation (11.15), it can be shown that the

variance σ2
NO

satisfies the ODE

dσ2
NO

dt
$ −2

(
k+ + k−)

σ2
NO

+ k+ (N − ⟨NO⟩) + k−⟨NO⟩. (11.26)

The equilibrium variance
(
σ2

NO

)
∞ is thus given by steady states of this equation. Setting

the left–hand side of this expression to zero, we obtain

(
σ2

NO

)
∞ $ N

k+k−

(
k+ + k−

)2 $ Np(1 − p). (11.27)

From this equation it is clear that the equilibrium variance is proportional to N, the
total number of channels. However, a relative measure of the variance known as the
coefficient of variation is more meaningful. The coefficient of variation of the number
of open channels, CVNO

, is given by the ratio of the standard deviation σNO
(the square

root of the variance) to the mean ⟨NO⟩. At equilibrium, we have

(CVNO)∞ $ (σNO)∞
⟨NO⟩∞

$ 1√
N

√
k−

k+ $

√
1 − p

Np
,

where the last equality is in agreement with the mean and variance of a binomially
distributed random variable being Np and Np(1−p), respectively. From this expression
it is clear that the equilibrium coefficient of variation for the number of open channels
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is inversely proportional to the square root of the number of channels N. Thus, in order
to decrease this relative measure of channel noise by a factor of two, the number of
channels must be increased by a factor of 4.

11.3 Fluctuations in Macroscopic Currents

When the voltage clamp technique is applied to isolated membrane patches, openings
and closings of single ion channels can be observed. Recall the single-channel record-
ings of T-type Ca2+ currents shown in the top panel of Figure 11.2. Importantly, the
bottom panel of Figure 11.2 shows that when several hundred single-channel record-
ings are summed, the kinetics of rapid activation and slower inactivation of the T-type
Ca2+ current are evident. In this summed trace, the relative size of the fluctuations in
the macroscopic current is much smaller than those observed in the single-channel
recordings; however, the fluctuations in ionic current are still noticeable.

During voltage clamp recordings of large numbers of ion channels, stochastic
gating leads to current fluctuations. For example, Figure 11.5B shows the time evo-

Figure 11.5 Variance and mean
sodium current measured from volt-
age-clamped single myelinated nerve
fibers from Rana pipiens depolarized
to −15 mV after 50 ms prepulses to
−105 mV. (A) Variance arising from
the stochastic gating of sodium chan-
nels (dots) and thermal noise (solid
line). (B) Mean current. (C) After care-
fully accounting for contributions to
the variance due to thermal noise,
the parabolic relationship between
variance and mean current suggests
N=20,400 sodium channels at this
node of Ranvier each with single
channel conductance of iunit $ 0.55
pA. Reprinted from Sigworth (1980).
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Figure 11.6 Acetylcholine–produced
current noise due to fluctuations
in ionic conductance of voltage–
clamped end-plates of Rana pipi-
ens nerve–muscle preparation. Ion-
tophoretic application of ACh re-
sulted in an increase in mean current
as well as variance. The second
trace, labeled “Rest,” also shows a
spontaneous miniature end-plate cur-
rent. Reprinted from Anderson and
Stevens (1973).

lution of the mean sodium current measured from voltage-clamped single myelinated
nerve fibers of Rana pipiens (frog) that were depolarized to −15 mV after 50 ms pre-
pulses to −105 mV. After a careful accounting for contributions to the variance of the
sodium current due to thermal noise (Figure 11.5A, solid line), the variance arising
from the stochastic gating of sodium channels remains (Figure 11.5A, dots). Figure
11.6 shows macroscopic current fluctuations induced by the iontophoretic application
of acetylcholine (ACh) to voltage–clamped end-plates of a Rana pipiens nerve-muscle
preparation. Interestingly, iontophoretic application of ACh increased the variance of
the end-plate current as well as the mean. While the first trace in Figure 11.6 shows a
spontaneous miniature end-plate current (sharp peak), the phenomenon of interest is
the 10-fold increase in variance observed throughout the duration of the second trace
(as compared to the first).

In order to understand the relationship between fluctuations in macroscopic cur-
rents and the underlying single-channel kinetics, consider the statistics of ionic current
implied by the two-state channel model presented in the previous section. In the sim-
plest case, the unitary current of each two-state channel will be a random variable
taking the value zero when the channel is closed or a fixed value iunit when the channel
is open. That is, the unitary current will be a random variable Iunit given by

Iunit $
{

iunit $ gunit (V − Vrev) when open,

0 when closed,
(11.28)

where V is a fixed command voltage, Vrev is the reversal potential for the single–channel
conductance gunit, and iunit is directly proportional to the conductance of the open
channel. With these assumptions, it is straightforward to apply the results of Section
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11.2 and derive the statistics of a fluctuating current that will result from N two-state
channels with unitary current given by (11.28). The fluctuating macroscopic current
will be a random variable defined by

Imacro $ NO iunit (0 ≤ NO ≤ N),

where NO is the number of open channels (also a random variable). Because the macro-
scopic current is directly proportional to NO, we can use (11.17) to find the equilibrium
average macroscopic current

⟨Imacro⟩∞ $ iunit⟨NO⟩∞.

Similarly, the equilibrium variance in the number of open channels, (σ2
NO

)∞, given by
(11.27), determines the equilibrium variance of the macroscopic current

(
σ2

Imacro

)
∞ $ i2unit

(
σ2

NO

)
∞ .

Recall that if we write p $ k+/
(
k+ + k−)

, the equilibrium mean and variance for the
number of open channels are given by ⟨NO⟩∞ $ Np and

(
σ2

NO

)
∞ $ Np(1 − p). Thus, the

equilibrium mean and variance for the macroscopic current are given by ⟨Imacro⟩∞ $
iunitNp and

(
σ2

Imacro

)
∞ $ i2unitNp(1 − p). Combining these expressions and eliminating p

gives
(
σ2

Imacro

)
∞ $ iunit⟨Imacro⟩∞ − ⟨Imacro⟩2

∞/N, (11.29)

where both ⟨Imacro⟩∞ and
(
σ2

Imacro

)
∞ are parameterized by p.

Equation (11.29) is the basis of a standard technique of membrane noise analysis
whereby current fluctuations can be used to estimate the number of ion channels in
a membrane patch. By repeatedly manipulating the fraction of open channels p an
estimate of (σ2

Imacro
)∞ as a function of ⟨Imacro⟩∞ is obtained. According to (11.29), the

relationship will be parabolic with zero variance at ⟨Imacro⟩∞ $ 0 and ⟨Imacro⟩∞ $ iunitN

and a maximum variance of
(
σ2

Imacro

)
∞ $ Ni2unit/4 at ⟨Imacro⟩∞ $ iunitN/2. In Figure 11.5C

this technique was applied to voltage-clamped single myelinated nerve fibers from
Rana pipiens. Equation (11.29) and a visual fit resulting in a maximum of

(
σ2

Imacro

)
∞ $

2.5 × 10−21 A2 at ⟨Imacro⟩∞ $ 5 nA suggests that N $ ⟨Imacro⟩2
∞/

(
σ2

Imacro

)
∞ $ 10, 000 and

iunit $ 1 pA. However, after carefully accounting for contributions to the variance due
to thermal noise, an adjusted fit (solid line in Figure 11.5C) gives N $ 20, 400 sodium
channels at this node of Ranvier and a unitary current of iunit $ 0.55 pA (see Sigworth
1980).

In Figure 11.7 this technique was applied to end-plate conductance fluctuations
of Rana pipiens nerve–muscle preparation. Here, the equilibrium variance of the
macroscopic conductance

(
σ2

gmacro

)

∞
is plotted against the mean conductance ⟨gmacro⟩∞,

where the macroscopic conductance is related to the unitary conductance through
gmacro $ Ngunit. Using (11.29) and the relations

⟨gmacro⟩∞ $ ⟨Imacro⟩∞
V − Vrev

, (σ2
gmacro

)∞ $
(σ2

Imacro
)∞

(V − Vrev)2 and iunit $ gunit (V − Vrev) ,
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Figure 11.7 Variance of conductance
fluctuations as a function of mean
end-plate conductance of Rana pipiens
nerve–muscle preparation. Because
the unitary conductance of end-plate
channels is small, the relationship
is linear and the slope of 0.19 ×
10−10 mho $ 19 pS gives the single–
channel conductance. Reprinted from
Anderson and Stevens (1973).

the reader can confirm that this relationship is also expected to be parabolic, that is,
(
σ2

gmacro

)

∞
$ gunit⟨gmacro⟩∞ − ⟨gmacro⟩2

∞/N.

However, because the unitary end-plate channel conductance of Rana pipiens nerve–
muscle preparation is very small (quadratic term negligible), the relationship is nearly
linear:

(
σ2

gmacro

)

∞
$ gunit⟨gmacro⟩∞.

Indeed, the slope of the line in Figure 11.7 gives a single channel conductance of 19 pS
for the open end-plate channel.

(       )

0

0.005

0.015

0.025

0.035

2 4 6 8 10

σ2
Imacro oo

Imacro oo

Figure 11.8 The parabolic relationship
between the variance and mean of
ionic current through N $ 10, 000
two-state channels each with single–
channel conductance of iunit $ 0.01 pA.
The parabolic relationship between the
variance

(
σ2

Imacro

)
∞ and mean ⟨Imacro⟩∞

of current fluctuations is calculated
from 100 simultaneously integrated
Langevin equations.
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11.4 Modeling Fluctuations in Macroscopic Currents with
Stochastic ODEs

Figure 11.8 shows a simulation reproducing the parabolic relationship between the
variance

(
σ2

Imacro

)
∞ and mean, ⟨Imacro⟩∞, of current fluctuations due to the stochastic

gating of ion channels. This simulation includes N $ 10, 000 identical two-state chan-
nels with unitary conductance of iunit $ 0.01 pA. A hundred trials were simultaneously
performed and averaged to calculate the mean and variance as the open probability
p ranged from 0 to 1. Because the methods discussed in Section 11.1.4 would require
the declaration of a Markov variable with 10,001 possible states, the reader may be
wondering how this simulation was performed.

Indeed, in simulating the stochastic gating of large numbers of ion channels,
Monte Carlo methods becomes impractical. However, when N is large, fluctuations in
macroscopic currents can instead be described using a stochastic ordinary differential
equation, called a Langevin equation, that takes the form

df

dt
$ g(f ) + ξ. (11.30)

In this equation, the familiar deterministic dynamics given by g(f ) are supplemented
with a rapidly varying random forcing term ξ(t). Because ξ is a random function of
time, solving (11.30) often means finding a solution f (t) that satisfies the equation for
a particular instantiation of ξ. Alternatively, if the statistics of ξ are given, we may be
interested in deriving the statistics of the new random variable f (t) that is formally
defined by (11.30).

The most common fluctuating force to consider are the increments of a Wiener pro-
cess. Similar to the unbiased random walk discussed in Chapter 12, a Wiener process
B(t) is a “Gaussian” random process that has zero mean

⟨B⟩ $ 0 (11.31)

and variance directly proportional to time,

σ2
B $ ⟨(B − ⟨B⟩)2⟩ $ ⟨B2⟩ $ t. (11.32)

Indeed, the instantiations of a Wiener process B1 and B2 shown in Figure 11.9 are
similar to the random walks presented in Figure 12.4. Just as the increments of an
unbiased random walk are ±#x with equal probability, resulting in an increment with
mean zero ⟨#X⟩ $ 0, the increments of the numerical approximation to a Wiener
process shown in Figure 11.9 are normally distributed with mean zero,

⟨#B⟩ $ 0.

In order to understand the variance of the increments of this simulated Wiener
process, we must remember that unlike an unbiased random walk, a Wiener process is
a continuous function of time, B(t). A relevant statistic for the increments of a Wiener
process is the two-time covariance or autocorrelation function ⟨#B(t)#B(t′)⟩. Because
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Figure 11.9 Two instantiations of a Wiener process, B1 and B2, have trajectories similar to the
random walks shown in Figure 12.4. The mean of 100 trials is near zero, while the variance of
100 trials increases linearly with time. In these simulations the increments ("B) are normally
distributed with mean zero and variance 1/"t , where "t is the integration time step.

nonoverlapping increments of a Wiener process are statistically independent and un-
correlated, ⟨#B(t)#B(t′)⟩ $ 0 for t′ > t + #t in Figure 11.9. In the limit as #t → 0 (i.e.,
for a “real” Wiener process), we might even write dB(t)/dt $ ξ(t), where ⟨ξ(t)⟩ $ 0 and

⟨ξ(t)ξ(t′)⟩ $ δ
(
t − t′

)
, (11.33)

although technically this derivative does not exist. Equation (11.33) may appear un-
usual, especially if the reader is unfamiliar with the Dirac delta function, defined by
δ(t) $ 0 for t ̸$ 0 and

∫ ∞

−∞
δ(t)dt $ 1.
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A Wiener process B(t) can be simulated by numerically integrating a piecewise
constant approximation to the Wiener increment #B(t). The Wiener increment (Figure
11.9B) is a normally distributed random variable with zero mean that is held fixed dur-
ing the time interval [t, t + #t] and updated after the integration time step is complete.
Integrating this erratic function of time results in the Wiener trajectories of Figure
11.9A and Figure 11.9C. If we rewrite (11.33) to account for this piecewise constant
approximation to the Wiener increments, we obtain

⟨#B(t)#B(t′)⟩ $
{

1/#t, t′ ∈ [t, t + #t],

0 otherwise.

Like the unbiased random walk, the variance of this simulated Wiener process is
proportional to time as shown in Figure 11.9D. The reader can confirm through
simulations that in order to achieve this macroscopic behavior, the variance of the
Wiener increments #B(t) must be adjusted according to the integration time step (i.e.,
Var[#B] $ 1/#t gives Var[B] $ t).

11.4.1 Langevin Equation for an Ensemble of Two-State Channels

In order to use a Langevin equation of the form of (11.30) to simulate a large number of
ion channels, we must make an appropriate choice for both the deterministic function
g(f ) as well as the statistics of the random variable ξ. Recalling the average rate equation
for the dynamics of the open fraction of channels (11.23), we write

dfO

dt
$ k+ (

1 − fO
)
− k−fO + ξ (11.34)

$ − fO − ⟨fO⟩∞
τf

+ ξ, (11.35)

where fO $ NO/N is a random variable, the fluctuating fraction of open channels,
⟨fO⟩∞ $ k+/

(
k+ + k−)

, and τf $ 1/
(
k+ + k−)

. For (11.35) to be meaningful, we must
specify the statistics of ξ. An appropriate choice for ξ is a fluctuating function of time
that has zero mean,

⟨ξ(t)⟩ $ 0,

and an autocorrelation function given by

⟨ξ(t)ξ(t′)⟩ $ γδ
(
t − t′

)
.

By methods of statistical physics beyond the scope of this book, γ can be shown to be
inversely proportional to N and proportional to the sum of the rates of both the O → C

and C → O transitions, that is,

γ(fO) $
k+ (

1 − fO
)
+ k−fO

N
. (11.36)

An appropriate choice for ξ is thus ξ $ √
γ#B, where the #B are the increments of a

Wiener process.
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Figure 11.10 (A,B) The open fraction fO of 1000 two-state ion channels simulated using a
Langevin equation. Transition rates are ten times faster in (A) than (B) so that the time constant
τf is 10 and 100 ms, respectively. (C) Numerically calculated autocorrelation function of fO . (D)
The equilibrium mean and variance of fO are approximately equal in the two cases.

Although we haven’t fully justified this choice for ξ, we can check that this ran-
dom variable and (11.35) define the random variable fO in a manner consistent with
the work in previous sections. To do this we use the fluctuation–dissipation theorem
(Keizer 1987; Gardiner 1997) from statistical physics that relates γ, which occurs in the
correlation function of ξ, to the equilibrium variance of fO. The relationship depends
on the relaxation time constant τf and is given by

γ∞ $
2

(
σ2

fO

)

∞
τf

. (11.37)

Using (11.27), and remembering that
(
σ2

fO

)

∞
$

(
σ2

NO

)
∞ /N2, the reader can confirm that

the last equality holds at equilibrium.
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Stochastic simulations of the open fraction, fO, of 1000 two-state ion channels
calculated by integrating (11.35) are shown in Figure 11.10. The transition rates used
were k+ $ k− $ 0.05/ms in panel (A) and k+ $ k− $ 0.005/ms in panel (B), giving
time constants (τf ) of 10 and 100 ms and equilibrium open fraction ⟨fO⟩∞ $ p $ 0.5 in
both cases. This difference in relaxation time constants is evident in the (normalized)
autocorrelation functions compared in C. It can be shown that for an infinitely long
simulation the autocorrelation functions for fO is

⟨fO(t)fO(t′)⟩ $
(
σ2

fO

)

∞
e−|t−t′|/τf .

The narrower autocorrelation function in Figure 11.10C thus corresponds to the case
with small time constant τf . Note that although the time constant for relaxation to

⟨fO⟩∞ $ 0.5 is faster in A than in B, the equilibrium variance
(
σ2

fO

)

∞
shown in Figure

11.10D is approximately equal in the two cases, as expected according to (11.27).

11.4.2 Fokker–Planck Equation for an Ensemble of Two-State Channels

Rather than calculating trajectories for the fraction of open channels fO using a
Langevin equation, an alternative is to calculate the evolution of the probability distri-
bution function (PDF) for fO. While the binomial distribution encountered in Section
11.2 is an example of a discrete probability distribution (NO takes on N + 1 discrete
values), the Langevin equation for fO (11.35) implies that fO can take on any value on
the interval [0,1]. Thus, the PDF for fO is continuous and defined as

P(f, t) df $ Prob{f (t) < fO < f (t) + df },

where conservation of probability gives
∫ 1

0
P(f, t) df $ 1. (11.38)

We can write an evolution equation for P(f, t), known as a Fokker–Planck equation, that
corresponds to the Langevin description given by (11.35):

∂P(f, t)
∂t

$ − ∂

∂f

[
Jadv

(
f, t

)
+ Jdif

(
f, t

)]
. (11.39)

In this equation, Jadv(f, t) is a probability flux due to advection (that is, transport)
governed by the deterministic terms in (11.35):

Jadv(f, t) $ − f − ⟨fO⟩∞
τf

P(f, t). (11.40)

In contrast, Jdif(f, t) is a diffusive flux that accounts for the spread of probability induced
by the random variable ξ. This diffusive probability flux is given by

Jdif(f, t) $ −1
2

∂

∂f

[
γ(f )P(f, t)

]
, (11.41)



11.5: Membrane Voltage Fluctuations 307

where γ is given by (11.36). Rewriting (11.40) in terms of the total probability flux
Jtot $ Jadv + Jdif , we have

∂P(f, t)
∂t

$ −
∂Jtot

(
f, t

)

∂f
, (11.42)

with associated boundary conditions

Jtot(0, t) $ Jtot(1, t) $ 0

that imply no flux of probability out of the physiological range for fO. An appropriate
choice of initial conditions would be P(f, 0) $ δ(f − ⟨fO⟩∞), implying that the system is
known to be in equilibrium at t $ 0.

Setting the left–hand side of (11.39) equal to zero, we see that the equilibrium
probability distribution P∞(f ) solves J∞

tot $ 0. That is,

− f − ⟨fO⟩∞
τf

P∞(f ) − 1
2

d

df

[
γ(f )P∞(f )

]
$ 0. (11.43)

This differential equation can be solved numerically. However, we obtain more insight
by approximating γ(f ) by

γ∞ $
k+ (

1 − ⟨fO⟩∞
)
+ k−⟨fO⟩∞

N
.

This procedure is valid when fluctuations of fO away from equilibrium, ⟨fO⟩∞, are small
(that is, when N is large). If we make this approximation, it can be shown that the
probability distribution

P∞(f ) $ A exp

[
f
(
2⟨fO⟩∞ − f

)

γ∞τf

]

(11.44)

satisfies (11.43), where the normalization constant A is chosen to satisfy conservation of
probability (11.38). While this expression may not look familiar, when γ∞ is sufficiently
small (N is sufficiently large), P∞(f ) is well approximated by the Gaussian

P∞(f ) $ 1
√

2π
(
σ2

fO

)

∞

exp

⎡

⎣−
(
f − ⟨fO⟩∞

)2

2
(
σ2

fO

)

∞

⎤

⎦ .

At equilibrium fO will be a normally distributed random variable with mean ⟨fO⟩∞
and variance

(
σ2

fO

)

∞
$ γ∞τf /2, in agreement with (11.37). The distribution P∞(f ) is

approximately Gaussian for N $ 1000 as shown in Figure 11.10D.

11.5 Membrane Voltage Fluctuations

In Section 11.3 we discussed macroscopic current fluctuations experimentally observed
in voltage clamp recordings and a membrane noise analysis. In this section we will
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Figure 11.11 Membrane voltage fluc-
tuations due to the stochastic gating
of one or more sodium channels.
(A,B) Single channel simulations.
Transition probabilities are a factor of
two slower in (B), leading to longer
dwell times and fewer transitions as
evidenced by ’kinks’ in graph. (C)
Twenty channels are simulated. As
the number of sodium channels in-
creases, the variance in membrane
voltage decrease.

simulate electrical recordings in which the membrane potential is not clamped, but
rather fluctuates under the influence of two-state ion channels. Although a misnomer,
such measurements are referred to as current clamp recordings. For now we assume
that ion channel gating is voltage-independent.

Simulations of membrane voltage fluctuations due to the stochastic gating of a
single sodium channel obeying the transition-state diagram (11.1) are shown in Figure
11.11A and Figure 11.11B. The gating of the two-state channel is simulated using Monte
Carlo methods, while membrane voltage is simultaneously calculated using the current
balance equation

C
dV

dt
$ −gL (V − VL) − gNa (V − VNa) , (11.45)

where gL is leakage conductance with reversal potential VL $ −70 mV, and gNa (a
random variable taking values of 0 or gmax

Na depending on channel state) is a sodium
conductance with reversal potential VNa $ 60 mV. Because transition probabilities
are a factor of two slower in Figure 11.11B, longer dwell times and fewer transitions
are observed. For comparison, Figure 11.11C shows the result when twenty chan-
nels are simulated. Here gNa takes on 21 possible values between 0 and gmax

Na and as
a consequence the variance in the fluctuating membrane voltage decreases.

Membrane voltage fluctuations such as those shown in Figure 11.11 can also be
modeled by tracking the evolution of probability distribution functions (PDFs) for
membrane voltage conditioned on the state of the ion channel. The governing equations
are coupled partial differential equations each of which is similar to the advective com-
ponent of the Fokker–Planck equations described above. We will refer to this method
as the ensemble density approach.

If membrane voltage fluctuations are due to a single two-state sodium channel,
there are two relevant conditional PDFs,

PC(v, t) dv $ Prob{v < V < v + dv|C, t},
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PO(v, t) dv $ Prob{v < V < v + dv|O, t},

where PC(v, t) and PO(v, t) are conditioned on the channel being closed or open,
respectively. Conservation of probability implies

∫ ∞

−∞
PC(v, t) dv $ 1,

∫ ∞

−∞
PO(v, t) dv $ 1.

The equations for the evolution of these conditional PDFs are

∂

∂t
PC(v, t) $ − ∂

∂v
JC(v, t) − k+PC(v, t) + k−PO(v, t), (11.46)

∂

∂t
PO(v, t) $ − ∂

∂v
JO(v, t) + k+PC(v, t) − k−PO(v, t), (11.47)

where JC(v, t) and JO(v, t) are advective probability fluxes due to membrane voltage
obeying the current balance equation (11.45):

JC(v, t) $ − 1
C

[gL (v − VL)] PC(v, t),

JO(v, t) $ − 1
C

[
gL (v − VL) + gmax

Na (v − VNa)
]
PO(v, t).

Notice that the sodium current term occurs only in JO(v, t), because if the channel is
closed, gNa $ 0. The reaction terms that appear in (11.46) and (11.47) account for prob-
ability flux due to the stochastic gating of the sodium channel. Regardless of membrane
voltage, the conditional probability PC(v, t) can decrease due to channel opening at a
rate of k+PC(v, t) and increase due to closing of open channels at a rate of k−PO(v, t).
The reaction terms occur with opposite sign because any increase or decrease in the
conditional probability PC(v, t) due to a channel gating implies commensurate change
in PO(v, t).

The equilibrium conditional probability distribution functions for the membrane
voltage, P∞

C (v) and P∞
O (v), calculated numerically from (11.46) and (11.47), are shown in

Figure 11.12A. The simulation ran for 1 second, corresponding to approximately 1000
changes in channel state. As expected, P∞

O (v) is shifted toward the right (depolarized
V) relative to P∞

C (v). The astute reader will note that the PDFs are not symmetric,
indicating that when the channel is open probability advects toward VNa faster than it
advects toward VL when the channel is closed; i.e., an open sodium channel leads to a
smaller membrane time constant. In Figure 11.12B, the rate constants k+ and k− are a
factor of ten slower. In this case, more probability accumulates near both VL and VNa.

11.5.1 Membrane Voltage Fluctuations with an Ensemble of Two-State
Channels

The ensemble density formulation described above can be extended to the case where
membrane voltage fluctuations are due to an ensemble of N two-state channels. If we
write PO(n, v, t) for the conditional probability density for membrane voltage given n



310 11: Modeling the Stochastic Gating of Ion Channels

-80 -40 0 40

0.002

0.006

0.010

0.014

0.018

V (mV)

P
ro

ba
bi

lit
y

-80 -40 0 40

0.005

0.015

0.025

0.035

0.045

V (mV)

P
ro

ba
bi

lit
y

A B

Figure 11.12 Equilibrium conditional probability distribution functions (PDFs), P∞
C (v ) (dotted

lines) and P∞
O (v ) (solid lines) for the membrane voltage conditioned on the state of a single

two-state sodium channel. In (A), k+ $ k− $ 1/ms, while for (B) the transition probabilities are
a factor of two slower.

open sodium channels, we have

∂

∂t
PO(n, v, t) $ − ∂

∂v
JO(n, v, t)

+ k+(N − n + 1)PO(n − 1, v, t) − k+(N − n)PO(n, v, t)

+ k−(n + 1)PO(n + 1, v, t) − k−nPO(n, v, t), (11.48)

where the reaction terms are based on the master equation formulation presented in
Section 11.2.1, JO(n, v, t) is given by

JO(n, v, t) $ − 1
C

[
gL (v − VL) + gmax

Na
n

N
(v − VNa)

]
PO(n, v, t),

and gmax
Na is the sodium conductance when all N channels are open. Note that (11.48)

represents N + 1 coupled partial differential equations, one for each PO(n, v, t), where
0 ≤ n ≤ N.

Figure 11.13 shows equilibrium conditional PDFs P∞
O (n, v) for membrane voltage

fluctuations induced by 20 two-state sodium channels. These PDFs are calculated by
numerically solving (11.48) until a steady state is achieved. Careful inspection of the
figure shows that in the case of high n (more open channels) the equilibrium distri-
bution of membrane voltage is shifted toward VNa. Note that these PDFs appear to be
consistent with a binomial distribution for the total equilibrium probability for a given
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Figure 11.13 Conditional probability dis-
tribution functions for membrane voltage
fluctuations due to stochastic gating of 20
two-state sodium channels. Parameters
as in Figure 11.12A.

value of n. That is,

P∞
O (n) $

∫ ∞

−∞
P∞

O (n, v) dv

is in agreement with (11.16).

11.6 Stochasticity and Discreteness in an Excitable
Membrane Model

Using the results of previous sections, we are prepared to explore the consequences
of stochasticity and discreteness in an excitable membrane model. The deterministic
Morris–Lecar model is

C
dV

dt
$ Iapp − gL (V − VL) − gKw (V − VK) − gCam∞ (V − VCa) (11.49)

dw

dt
$ w∞ − w

τ
, (11.50)

where the activation function for the Ca2+ current, m∞(V); the activation function for
the K+ current, w∞(V); and voltage-dependent time scale for activation of K+ current,
τ(V), are given in Chapter 2.

In (11.50), w is usually thought to represent the fraction of open K+ channels.
However, we now understand that this differential equation is actually an average rate
equation similar to (11.23). To be clear, let us write this deterministic average rate
equation as

d⟨w⟩
dt

$ w∞ − ⟨w⟩
τ

,

where w (a random variable) represent the fraction of open K+ channels. The reader
can easily verify that this average rate equation corresponds to the two-state kinetic
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scheme

C (closed)

α(V)

⇀↽

β(V)

O (open),

where C and O indicate closed and open states of the K+ channel, and the voltage-
dependent transition rates α(V) and β(V) are given by

α(V) $ w∞

τ

β(V) $ 1 − w∞

τ
.

This, in turn, implies that the equilibrium fraction of open K+ channels is

⟨w⟩∞ $ w∞(V) $ α

α + β
,

and the time constant τ(V) is

τ(V) $ 1
α + β

.

With these preliminaries, we can see that a Morris–Lecar simulation that includes
channel noise due to a small number of K+ channels could be performed with several
Markov variables obeying the voltage-dependent transition probability matrix

Q $
[

1 − α#t β#t

α#t 1 − β#t

]

for each channel. Alternatively, a larger collection of N channels can be simulated by
tracking only a single Markov variable, the number of open K+ channels. In this case,
the following tridiagonal transition probability matrix would be used:

Q $

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 β#t

Nα#t D1

(N − 1)α#t

. . .

(N − 1)β#t

DN−1 Nβ#t

α#t DN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with diagonal terms (D0, D1, . . . , DN−1, DN) such that each column sums to unity.

11.6.1 Phenomena Induced by Stochasticity and Discreteness

Figure 11.14 and Figure 11.15 show Morris–Lecar simulations that include stochas-
tic voltage-dependent gating of 100 K+ channels. Spontaneous action potentials are
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Figure 11.14 Morris–Lecar simula-
tions including stochastic gating of
100 K + channels. (A) Spontaneous
excitability driven by channel noise
is observed when Iapp = 10 and the
deterministic model is excitable. (B)
Stochastic oscillations are observed
when Iapp = 12 and the determinis-
tic model is oscillatory. (C) Stochastic
bistability is observed when the de-
terministic model is bistable (Iapp = 12
and v3 = 15 mV rather than standard
value of 10 mV).

induced by this simulated channel noise (Figure 11.14A). We will refer to this phe-
nomenon as “stochastic excitability,” because it is understood as a sampling of the
excitable phase space of the deterministic model made possible by membrane potential
fluctuations due to the stochastic gating of K+ channels. The (V, w) phase plane trajec-
tories for Figure 11.14 are shown in Figure 11.15. The discreteness and stochasticity of
the K+ gating variable w allows trajectories to fluctuate around the fixed point of the
deterministic model seen in the lower left of Figure 11.15. Occasionally, K+ channels
spontaneously inactivate (w fluctuates toward 0) and a regenerative Ca2+ current leads
to an action potential. This type of spontaneous activity has been observed in stochastic
versions of the Hodgkin–Huxley equations (Chow and White 1996; Fox 1997) and is
thought to influence subthreshold membrane potential oscillations and excitability of
stellate neurons of the medial entorhinal cortex of the hippocampal region (White et
al. 1995; White et al. 2000).

In Figure 11.14B parameters are such that the deterministic model (as N → ∞) is
oscillatory. However, when N $ 100 channel noise results in irregular oscillations. In
Figure 11.14B stochastic bistability is observed. When parameters are chosen so that
the deterministic model is bistable, channel noise allows the alternate sampling of two
stable fixed points in the (V, w) phase plane, a phenomenon known as basin hopping.

11.6.2 The Ensemble Density Approach Applied to the Stochastic
Morris–Lecar Model

The ensemble density approach described in Section 11.4.2 can be applied to the
stochastic Morris–Lecar model described above. The evolution equations for the
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C Figure 11.15 Morris–Lecar simulations
with stochastic gating of 100 K + channels
shown in the (V,w ) phase plane. Panels
correspond to (A) stochastic excitability,
(B) oscillations, and (C) bistability shown
in Figure 11.14.

conditional PDFs take the form
∂

∂t
PO(n, v, t) $ − ∂

∂v
JO(n, v, t)

+ α(v)(N − n + 1)PO(n − 1, v, t) (11.51)

− α(v)(N − n)PO(n, v, t)

+ β(v)(n + 1)PO(n + 1, v, t) − β(v)nPO(n, v, t).

This form is similar to (11.48) except that the transition probabilities are now voltage-
dependent, and the probability fluxes JO(n, v, t) are given by the Morris–Lecar current
balance equation (11.49). That is,

JO(n, v, t) $ − 1
C

[
Iapp − gL (v − VL) − gmax

K
n

N
(v − VK) − gCam∞ (v − VCa)

]
PO(n, v, t).

Figure 11.16 shows equilibrium PDFs for the membrane voltage of the stochastic
Morris–Lecar model conditioned on the number of open K+ channels. These equilib-
rium PDFs are steady-state solutions to (11.51) and correspond to the three types of
trajectories shown in Figure 11.15. The amount of time that trajectories spend in differ-
ent regions of the (V, w) phase plane is reflected in these distributions. It is clear from
Figure 11.15A that the Morris–Lecar model exhibiting stochastic excitability spends a
large proportion of time near the threshold for excitation.

11.6.3 Langevin Formulation for the Stochastic Morris–Lecar Model

To consider the behavior of the Morris–Lecar model under the influence of channel
noise from a large number of K+ channels, it is most convenient to use the Langevin
formulation presented in Section 11.4.1. We do this by supplementing the rate equation
for the average fraction of open K+ channels, (11.50), with a rapidly varying forcing
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Figure 11.16 Probability distribu-
tion functions for the membrane
voltage of the stochastic Morris–
Lecar model conditioned on the
number of open K + channels. The
equilibrium PDFs show evidence
of stochastic excitability (A), os-
cillations (B), and bistability (C),
corresponding to the trajectories
shown in Figure 11.15.
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Figure 11.17 The stochastic
Morris–Lecar model simulated us-
ing a Langevin equation for w , the
fraction of open K + channels. As
the number of K + channels is in-
creased (N = 25, 50, 100, 500, or
1000) spontaneous action poten-
tials induced by stochastic gating
are eliminated. For large N , the
model is excitable, but essentially
deterministic; i.e., fluctuations in w

are small and spontaneous action
potentials are no longer observed
without applied current.

term

dw

dt
$ w∞ − w

τ
+ ξ,

where w is a random variable, ⟨ξ⟩ $ 0, and the autocorrelation function of ξ is given by

⟨ξ(t)ξ(t′)⟩ $ γ(w, V)δ
(
t − t′

)
.

Following (11.36), γ (w, V) is chosen to be

γ (w, V) $ α (1 − w) + βw

N
$ 1

N

(1 − 2w∞) w + w∞

τ
. (11.52)

Thus, ξ is a random variable defined by ξ $
√

γ (w, V)#B, where the #B are the
increments of a Wiener process.

Figure 11.17 presents stochastic Morris–Lecar model simulations implemented us-
ing the Langevin formulation described above. Interestingly, the existence of stochastic
excitability depends on the the number of K+ channels included. When N is relatively
small (N = 25, 50, 100) membrane potential fluctuations are large, and spontaneous
action potentials are frequent. However, when more K+ channels are included (N =
500, 1000), the model becomes essentially deterministic. Although the model is still ex-
citable, as N → ∞ fluctuations in w become smaller, and spontaneous action potentials
are no longer observed.
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Suggestions for Further Reading

• Handbook of stochastic methods for physics, chemistry, and the natural sciences,
G.W. Gardiner. This is an accessible introduction to stochastic methods including
Markov systems, stochastic differential equations, Fokker–Planck equations, and
master equations (Gardiner 1997).

• Spontaneous action potentials due to channel fluctuations, C.C. Chow and J.A.
White. A theoretical and numerical analysis of the Hodgkin–Huxley equations
when stochastic ion channel dynamics are included (Chow and White 1996).

• Stochastic versions of the Hodgkin–Huxley equations, R.F. Fox. A presentation of
master equation and Langevin descriptions of the Hodgkin– Huxley equations with
stochastic ion channel dynamics (Fox 1997).

• Channel noise in neurons, J.A. White, J.T. Rubinstein, and A.R. Kay. A good review of
stochastic gating of voltage-dependent ion channels and channel noise in neurons
(White et al. 2000).

11.7 Exercises
1. Consider a single GLUT molecule and the four states (S1, S2, S3, S4) and transitions shown

in Figure 3.1. Define s to be a random variable taking values s ∈ {1, 2, 3, 4} corresponding
to these four states and write Pi(t) to represent the probability that s(t) $ i, that is, the
molecule is in state i at time t. Write an equation that indicates conservation of probability,
that is, an equation resulting from the fact that the molecule must be in one of the four
states.

2. Consider the possibility that the GLUT transporter (see previous exercise) is in state 1 at
time t. What is the probability that in a short interval of time [t, t+#t] the GLUT transporter
will associate with glucose, thereby transitioning out of state 1 and into state 2? What is the
conditional probability, given that the channel is in state 1, of a 1 → 2 transition occurring
during this interval?

3. Figure 3.1 and Table 3.1 indicate four possible ways for the GLUT transporter to enter or
leave state 1. Accounting for all of these, we can write

P1(t + #t) $ P1(t) − k12[G]outP1(t)#t − k14P1(t)#t + k21P2(t)#t + k41P4(t)#t.

Write three additional equations relating Pi(t + #t) and Pi(t) for i $ {2, 3, 4} and take the
limit #t → 0 to derive the a system of ODEs governing changes in probabilities for a single
GLUT molecule being in states 1 through 4.

4. Use the method of substitution to confirm that the binomial distribution given by (11.16)
is the steady state of the master equation for the two-state ion channel (11.15). Begin with
a time-independent version of (11.15),

0 $ k+(N − n + 1)P∞
O (n − 1) − k+(N − n)P∞

O (n) + k−(n + 1)P∞
O (n + 1) − k−nP∞

O (n);
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and subsitute P∞
O (n − 1), P∞

O (n), and P∞
O (n + 1) according to (11.16). Remember that p $

k+/(k+ + k−) and 1 − p $ k−/(k+ + k−). After some algebra you will find that in order to
balance the k+ and k− terms, one must have

(N − n + 1)

(
N

n − 1

)

$ n

(
N

n

)

,

(n + 1)

(
N

n + 1

)

$ (N − n)

(
N

n

)

,

as is indeed the case.

5. Using (11.17) as a guide, write an expression for the average number ⟨NC⟩ of closed channels
in terms of PC(n, t). Then show that N − ⟨NO⟩ $ ⟨NC⟩, as stated in (11.20). Hint: You will
need to use PC(n, t) $ PO(N − n, t) and

∑N
n$0 nPO(N − n, t) $

∑N
n$0(N − n)PO(n, t).

6. Using the result of Exercise 5, confirm that (11.18) is equivalent to (11.19). In order to do
so, you will need to show that

−⟨NO⟩ $
N∑

n$0

n (n + 1) PO(n + 1, t) −
N∑

n$0

n2PO(n, t)

and

⟨NC⟩ $
N∑

n$0

n (N − n + 1) PO(n − 1, t) −
N∑

n$0

n (N − n) PO(n, t).

7. Equation (11.18) is the master equation for the two-state channel with kinetic scheme given
by (11.1). Derive the the master equation for the GLUT transporter shown in Figure 3.1.

8. Show that in the case of the two-state channel, the variances defined with respect to fluctu-
ations in open channel number (σ2

NO
) and closed channel number (σ2

NC
), are equal. You will

need some of the relations from Exercise 5 as well as (11.24) and (11.25).

9. Confirm (11.26), the equation for the time-dependence of the variance of the two-state
channel. Hint: Differentiate (11.24) to obtain

dσ2
NO

dt
$

N∑

n$0

[
−2 (n − ⟨NO⟩)

d⟨NO⟩
dt

PO(n, t) + (n − ⟨NO⟩)2 dPO(n, t)
dt

]
. (11.53)

Now check to see whether the right–hand sides of (11.26) and (11.53) are equal. Use (11.19)
and (11.15) as well as

N∑

n$0

(n − ⟨NO⟩)2 (N − n + 1) PO(n − 1, t) $
N−1∑

n$0

(n + 1 − ⟨NO⟩)2 (N − n) PO(n, t),

N∑

n$0

(n − ⟨NO⟩)2 (n + 1) PO(n + 1, t) $
N∑

n$1

(n − 1 − ⟨NO⟩)2 nPO(n, t).

10. Simulate the four-state GLUT transporter shown in Figure 3.1 by implementing a Markov
process with transition probability matrix

Q $

⎡

⎢⎢⎢⎢⎣

D1 k21#t 0 k41#t

k12[G]out#t D2 k32#t 0

0 k23#t D3 k43#t

k14#t 0 k34[G]in#t D4

⎤

⎥⎥⎥⎥⎦
,
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where the diagonal entries (D1, D2, D3, D4) are such that each column sums to 1.

11. Confirm the form of the time-invariant conditional PDFs shown in Figure 11.12.

12. Reproduce simulations from Figure 11.14, Figure 11.15, and Figure 11.17.


