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Abstract of the Dissertation

General birth-death processes:

probabilities, inference, and applications

by

Forrest Wrenn Crawford

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2012

Professor Marc A. Suchard, Chair

A birth-death process is a continuous-time Markov chain that counts the number of particles

in a system over time. Each particle can give birth to another particle or die, and the

rate of births and deaths at any given time depends on how many extant particles there

are. Birth-death processes are popular modeling tools in evolution, population biology,

genetics, epidemiology, and ecology. Despite the widespread interest in birth-death models,

no efficient method exists to evaluate the finite-time transition probabilities in a process

with arbitrary birth and death rates. Statistical inference of the instantaneous particle

birth and death rates also remains largely limited to continuously-observed processes in

which per-particle birth and death rates are constant. The lack of theoretical progress in

developing statistical tools for dealing with data from birth-death processes has hindered

their adoption by applied researchers, and represents a major research frontier in statistical

inference for stochastic processes. In this dissertation, I seek to fill this apparent void in

three ways. First, I develop mathematical theory and computational tools for computing

transition probabilities for general birth-death processes. Second, I develop algorithms for

maximum likelihood estimation of rate parameters in discretely observed processes. Third,

I derive probability distributions for characteristics of certain birth-death models that are

fundamental in macroevolutionary studies. In each case, I give practical applications of the

methodology, and show how unsolved problems can be attacked using these techniques.
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CHAPTER 1

Introduction to birth-death processes

in evolution and ecology

1.1 Motivation

Stochastic processes play a vital role in modern evolutionary theory and inference. Models

of evolutionary change that incorporate some kind of randomness are appealing for two

reasons: first, macroevolutionary change arises from such complex mechanisms that it can

reasonably be regarded as fundamentally stochastic; second, and more practically, stochastic

models give researchers a means to form hypotheses about the nature of evolutionary change

in a rigorous statistical framework that allows model selection and evolutionary hypothesis

testing.

One fundamental property of evolutionary change is its branching structure. The simplest

branching models for species evolution assume that one species splits into two (a speciation

event) and bequeaths its characteristics to both offspring, which evolve independently and

simultaneously. This branching process continues in both new species over long evolutionary

timescales. The evolutionary relationship for a collection of species can be expressed as a

“family tree”, called a phylogeny, and researchers often attempt to reconstruct phylogenies

for observed species. For example, modelers often treat species evolution as a stochastic

branching process that generates a phylogenetic tree. Then, on the branches of this tree,

another stochastic process gives rise to the observed data: often DNA sequence evolution

is treated as a continuous-time Markov chain on the states {A,G,C, T}; quantitative trait

changes are modeled by Brownian motion. Using simple stochastic models for speciation

and DNA sequence/trait evolution, researchers have developed sophisticated methods for

1



statistical inference of important evolutionary quantities of interest, including time to most

recent common ancestor for a group of species, rate of speciation, and rates of nucleotide

mutation, insertion, or deletion.

When modern-day scientists measure the characteristics of a collection of extant species,

they glimpse only a contemporary snapshot of this process – the number of species and

their characteristics, which may include DNA sequences. But the evolutionary genealogy

that produced the species remains unobserved. This raises the question of how researchers

can infer the parameters underlying the evolution of those species. Despite the widespread

usefulness of probabilistic ideas in explanatory models of evolution, performing statistical

inference using evolutionary data can be dauntingly complex. One reason for this is that

even simple models of evolutionary change are often mathematically intractible. Part of the

difficulty arises from the branching structure of evolutionary change, which confers statis-

tical dependencies on observed data. This dependency, or covariance structure, is largely

unobserved, since one generally does not know the phylogeny a priori. The difficulty of

handling corellated data from species whose evolutionary relationship is unknown can make

evolutionary inference extremely challenging. Indeed, in order for a probabilistic model to be

useful for researchers interested in learning about evolution, they must be able to compute

the probability, or likelihood, of the data they observe, given some evolutionary parameters.

Stochastic data whose dependencies arise from another stochastic process can thwart prin-

cipled statistical analysis, and many researchers are actively working on finding tractable

models and advanced inference schemes for dealing with such datasets.

One intuitively resonable assumption that can dramatically simplify the evolutionary

inference task is the principle of conditional independence. This assumption has two conse-

quences relevant to the statistical inference problem for evolutionary models. First, when

a species splits into two, the offspring evolve independently and the statistical distribution

of their traits is identical, conditional on the trait of their common ancestor. Second, the

further waiting time until an evolutionary event is “memoryless” – it does not depend on

how much time has already elapsed. This assumption is also known as the Markov property,

and leads to waiting times between speciation events whose statistical distribution is expo-

2



nential. Together, these consequences of the conditional independence assumption render

tractable many useful evolutionary models.

Counts are one of the simplest types of evolutionary data. For example, researchers may

count inserted or deleted nucleotides in DNA sequences, genes, chromosomes, species, or even

individual organisms in a population. In this introductory chapter, we introduce a simple

but analyticially troublesome class of stochastic counting models called birth-death processes

(BDPs). BDPs have gained wide use in both evolutionary theory and applications, including

population genetics, ecology, and phylogenetic reconstruction. We shall see that the general

BDP is simple to describe analytically, but likelihoods for discrete observations from the

process can be perniciously difficult to compute. Our treatment of BDPs serves as a case

study for work at the mathematical/statistical frontiers of evolutionary inference, and illus-

trates the successful marriage of probabilistic insight and classical statistical methodology

in an important applied setting.

In the remainder of this chapter, we describe in detail some theoretical background

on BDPs, a numerical method for computing transition probabilities, and techniques for

likelihood-based inference. Our treatment is largely theoretical, since the methodology we

develop is new. Indeed, so much mathematical work remains to be done in evolutionary

modeling and inference, we do not feel it is inappropriate to devote our entire chapter to new

methods for calculating likelihoods and doing statistical inference for BDPs. We conclude

the chapter with a brief numerical example of evolutionary inference for microsatellite repeat

number evolution in humans and chimpanzees.

1.2 Background and mathematical description

BDPs are a flexible class of continuous-time Markov chains that model the number of “par-

ticles” in a system, where each particle can “give birth” to another particle or “die” (Feller,

1971; Karlin and Taylor, 1975). BDPs are a type of branching process in which we do not

keep track of the ancestry of each particle, only the total number in a system or popula-

tion (Kimmel and Axelrod, 2002). Figure 1.2 shows the relationship between a branching

3



process and the corresponding birth-death process. The rate of births and deaths at any

given time depends on how many extant particles there are. When there are k particles,

a birth occurs with instantaneous rate λk and a death with instantaneous rate µk. In the

classical “simple linear” BDP, λk = kλ and µk = kµ so that per-particle birth and death

rates remain constant. In a “general” BDP, λk and µk can be any function of k but remain

time-homogeneous (Kendall, 1948, 1949).

The usefulness of BDPs lies in the fact that “particle” can refer to a member of any dis-

crete potentially interacting system in which one only keeps track of the number of objects

in existence. BDPs are popular modeling tools in evolution, population biology, genetics,

and ecology (Novozhilov et al, 2006). For example, if we interpret the particles as species

in a macroevolutionary setting, BDPs can be used to study speciation and extinction over

evolutionary timescales (Nee et al, 1994; Nee, 2006). BDPs can also be used to study in-

fectious disease dynamics in a finite population, where the number of individuals infected

is the quantity of interest (Bailey, 1964; Andersson and Britton, 2000). In molecular evo-

lution, BDPs can model inserted and deleted nucleotides in a DNA or RNA sequence as

part of a probabilistic alignment method (Thorne et al, 1991; Holmes and Bruno, 2001),

mobile/transposable genetic elements (Rosenberg et al, 2003), gene families (Demuth et al,

2006), or even whole chromosomes (Mayrose et al, 2010). BDPs can model populations

of organisms in a resource-limited environment (Tan and Piantadosi, 1991; Renshaw, 1993,

2011). In finite populations, BDPs are commonly used to model quantities of interest in

an evolutionary setting, such as allele frequencies, selection, or coalescence (Moran, 1958;

Krone and Neuhauser, 1997; Kingman, 1982b).

There is a rich history of theoretical research into the properties of BDPs. Kendall (1948,

1949) introduces the process with constant per-particle birth and death rates and finds the

transition probabilities by a generating function argument. In their groundbreaking series of

papers, Karlin and McGregor analyze properties of BDPs, including stationary distributions,

moments, transition probabilities, recurrence and passage times, and other quantities of

interest (Karlin and McGregor, 1957b,a). They also explore in depth applications of this

theory to BDPs whose rates depend linearly on k (Karlin and McGregor, 1958a), and queuing
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processes (Karlin and McGregor, 1958b).

Beyond the pioneering work of Karlin and McGregor, many authors have discovered

extensions and deeper interpretations for the theoretical properties of BDPs. For example,

the theory of BDPs is intimately related to properties of continued fractions (Guillemin and

Pinchon, 1999). Flajolet and Guillemin (2000) elucidate the relationship between sample

trajectories (or state paths) of a BDP and lattice path combinatorics via continued fractions

and develop expressions for a variety of recurrence and passage time variables in terms of

continued fractions. Lenin and Parthasarathy (2000) and Parthasarathy et al (1998) discuss

further some well-known continued fractions whose deep connection to BDPs previously went

unappreciated.

To make our discussion more formal, consider a continuous-time Markov chain X(t)

representing the number of particles in a system at time t, taking values on the non-negative

integers. To construct a general BDP in a formal way, we first define the rules according to

which the number of particles evolves. We do this by specifying the behavior of the process

for a very short time ∆t, when there are k particles in the system. Intuitively, if ∆t is very

small, the probability of an event during (t, t+ ∆t) that occurs with rate r is approximately

r∆t. Therefore, the probability of a birth in the interval (t, t+ ∆t), given X(t) = k, is

Pr (X(t+ ∆t)−X(t) = 1 | X(t) = k) = λk∆t+ o(∆t). (1.1)

By o(∆t) we mean terms that have smaller order than ∆t, so that

lim
∆t→0

o(∆t)

∆t
= 0. (1.2)

Intuitively, this means that the probability of more than one birth in a small time ∆t is

negligibly small. The probability of a death in (t, t+ ∆t) is likewise

Pr (X(t+ ∆t)−X(t) = −1 | X(t) = k) = µk∆t+ o(∆t). (1.3)

The chance of more than one event of either kind is

Pr (|X(t+ ∆t)−X(t)| > 1 | X(t) = k) = o(∆t). (1.4)
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Figure 1.1: Equivalence of branching and counting process interpretations for birth-death

processes. The branching process diagram at top shows the genealogy of all individuals

during t ∈ (0, 2), where circles represent births and squares represent deaths. The lower

diagram shows the equivalent BDP X(t) counting the number of extant individuals during

the same time interval, where the ancestry implicit in the branching diagram is ignored.
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Together, these assumptions imply that the probability of no births or deaths occurring

during (t, t+ ∆t) is

Pr (X(t+ ∆t)−X(t) = 0 | X(t) = k) = 1− (λk + µk)∆t+ o(∆t). (1.5)

1.2.1 Transition probabilities

Let Pab(t) = Pr(X(t) = b | X(0) = a) be the transition probability from state X(0) = a

to X(t) = b. We can use the above equations to form a differential equation describing the

change in transition probabilities over time as the process evolves. Suppose that X(0) = a.

At the current time t, we want to know the probability that in the next ∆t units of time,

the process will reach state b. We look into the future by writing the probabilities of three

types of events that can take the process to state b: birth from b − 1, death from b + 1, or

no change from b:

Pab(t+ ∆t) = λb−1Pa,b−1(t)∆t+ µb+1Pa,b+1(t)∆t+ (1− λb − µb)Pab(t)∆t+ o(∆t). (1.6)

The probability of moving from any other state to b is negligibly small. Subtracting Pab(t)

from both sides, dividing by ∆t, and sending ∆t to zero, we obtain the Kolmogorov forward

equations:
dPab(t)

dt
= λb−1Pa,b−1(t) + µb+1Pa,b+1(t)− (λb + µb)Pab(t), (1.7)

where Pab(0) = 1 if a = b and zero otherwise. We always assume µ0 = λ−1 = 0. In matrix

form, (1.7) becomes
dP(t)

dt
= AP(t), (1.8)

where A is the generator matrix with entries A = {aij}, ai,i−1 = µi, aii = −(λi + µi),

and an,n+1 = λi. In the matrix case, the initial condition becomes P(0) = I. This infinite

sequence of coupled ordinary differential equations (1.7) or (1.8) can be difficult to solve for

many general BDPs (Novozhilov et al, 2006; Renshaw, 2011).

Fortunately, in the simple linear BDP where λk = kλ and µk = kµ, it is possible to solve

for these transition probabilities explicitly by finding a generating function solution to the

forward equations (Bailey, 1964; Lange, 2010a). To illustrate, let Ga(s, t) =
∑∞

k=0 s
kPak(t).
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Let b = k in (1.7), multiply both sides by sk, and sum on k to obtain

∂Ga(s, t)

∂t
=
∞∑

k=0

sk
dPak(t)

dt

= λs2

∞∑

k=1

(k − 1)sk−2Pa,k−1(t) + µ
∞∑

k=0

(k + 1)skPa,k+1(t)

− (λ+ µ)s
∞∑

k=0

ksk−1Pak(t)

= (λs− µ)(s− 1)
∂Ga(s, t)

∂s
,

(1.9)

with the initial condition Ga(s, 0) = sa. Using Lagrange’s method, we suppose s is a function

of t. Differentiating G(s, t) = s0, we have

∂Ga

∂t
=
∂Ga

∂s

∂s

∂t
= 0. (1.10)

Comparing this to (1.9), the problem reduces to solving the auxilliary ordinary differential

equation
ds

dt
= (λs− µ)(1− s). (1.11)

Equation (1.11), and the initial condition s(0) = s0, lead to the solution

s0 =
µ(s− 1) + (λs− µ)e−(λ−µ)t

λ(s− 1) + (λs− µ)e−(λ−µ)t
. (1.12)

Now Ga(s, 0) = sa, so in general

Ga(s, t) =

(
µ(s− 1) + (λs− µ)e−(λ−µ)t

λ(s− 1) + (λs− µ)e−(λ−µ)t

)a
. (1.13)

Inverting and finding the bth coefficient of the power series Ga(s, t) we find the transition

probabilities

Pab(t) =

min(a,b)∑

j=0

(
a

j

)(
a+ b− j − 1

a− 1

)
αa−jβb−j(1− α− β)j, (1.14)

where

α(t) =
µ(e(λ−µ)t) − 1)

λ(e(λ−µ)t − µ)
and β(t) =

λ(e(λ−µ)t) − 1)

λe(λ−µ)t − µ . (1.15)
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The problem becomes much more complicated for general BDPs. Karlin and McGregor

(1957b) present the definitive treatment of the existence of transition probabilities and other

properties of BDPs. They obtain the following integral form for the transition probabilities:

Pab(t) = ωb

∫ ∞

0

e−xtQa(x)Qb(x) dψ(x), (1.16)

where ω0 = 1 and ωk = (λ0 · · ·λk−1)/(µ1 · · ·µk) for k ≥ 1. To see intuitively why this is so,

consider a sequence of polynomials {Qk(x)} satisfying the three-term recurrence relation

−xQ0(x) = −(λ0 + µ0)Q0(x) + λ0Q1(x), and

−xQk(x) = µkQk−1(x)− (λk + µk)Qk(x) + λkQk+1(x) for k ≥ 1.
(1.17)

Here, ψ is the spectral measure of the process with respect to which the polynomials {Qk(x)}
are orthogonal via the inner product:

〈Qa, Qb〉ψ =

∫ ∞

0

Qa(x)Qb(x) dψ(x) =





0 when a 6= b

1/ωb when a = b,

(1.18)

where Q0(x) = 1. In vector-matrix form, the relationship (1.17) becomes

−xQ(x) = AQ(x). (1.19)

That is, Q(x) is a right-eigenvector of A with corresponding eigenvalue −x. To proceed, we

study the sequence of functions

fa(x, t) =
∞∑

k=0

Pak(t)Qk(x), a = 0, 1, 2, . . . . (1.20)

In matrix-vector notation, the sequence (1.20) becomes

f(x, t) = P(t)Q(x). (1.21)

We ignore the details of defining infinite-dimensional vector-matrix multiplication. Now

differentiating (1.21), we obtain
∂f(x, t)

∂t
= −xf(t), (1.22)

with the initial condition f(x, 0) = P(0)Q(x) = Q(x) since P(0) = I. Solving the differential

equation (1.22), we have

f(x, t) = e−xtQ(x). (1.23)
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The ath element of f(x, t) is

fa(x, t) =
∞∑

k=0

Pak(t)Qk(x) = e−xtQa(x). (1.24)

Now multiplying both sides of (1.24) by Qb(x) and integrating with respect to the measure

ψ(x), we return to

∞∑

k=0

Pa,k(t)

∫ ∞

0

Qk(x)Qb(x) dψ(x) =

∫ ∞

0

e−xtQa(x)Qb(x) dψ(x). (1.25)

The integrand on the left side of (1.25) is zero when b 6= k, so by (1.18), we are left with

Pab(t)

ωb
=

∫ ∞

0

e−xtQa(x)Qb(x) dψ(x). (1.26)

Multiplying by ωb, we obtain (1.16), completing our informal derivation.

It is interesting to note that we can regard Pab(t) is the bth (generalized) Fourier coefficient

of fa(x, t). This integral representation of the transition probabilities for a BDP is intuitively

satisfying because the time-dependency of Pab(t) is contained entirely in the exponential

term, and Pab(t) depends on Qa(x) and Qb(x) in a simple way. In addition, we have the

obvious corollary that
Pab(t)

Pba(t)
=
ωb
ωa
. (1.27)

Beyond these simple results related to the interpretation of (1.26), the formalism developed

by Karlin and McGregor (1957b) makes possible deep analytic insight into the behavior

of general BDPs, including recurrence times and first passage times. One result of special

interest to us gives the conditions under which a BDP with a given transition rate matrix

A is unique: Karlin and McGregor show that there is only one transition probability matrix

P(t) that satisfies (1.8) if and only if

∞∑

k=0

(
ωk +

1

λkωk

)
=∞. (1.28)

This property assumes that probability is conserved on the non-negative integers and hence

µ0 = 0. We will always assume this is the case in what follows.

Equilibrium solutions are straightforward to obtain (Renshaw, 2011). Setting the left-

hand side of the Kolmogorov forward equations (1.7) to zero and replacing the finite-time
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transition probabilities Pab(t) with the equilibrium probabilities πb, we find that

µb+1πb+1 − λbπb = µbπb − λb−1πb−1. (1.29)

Since this is the case for every b, it is true for b = 0 in particular, and µ0 = λ−1 = 0, so both

sides of (1.29) are zero for every b by induction. This gives the detailed balance condition

for continuous-time Markov chains,

µkπk = λk−1πk−1 for k = 1, 2, . . . . (1.30)

Therefore every general BDP is a reversible Markov chain. Iterating the recurrence (1.30),

we find that

πk =
λ0λ1 · · ·λk−1

µ1µ2 · · ·µk
π0, (1.31)

where we have choosen π0 so that
∑

k πk = 1. Note that πk ∝ ωk for every k.

Despite the elegant representation (1.16) for the transition probabilities, it can be very

difficult to find the polynomials {Qk(x)} (Renshaw, 2011; Novozhilov et al, 2006). In ad-

dition, the task of finding these polynomials and measure ψ is a fundamentally analytical

task, and is generally not amenable to computational solution. In other words, one cannot

simply compute Pab(t) using a computer for an arbitrary set of birth and death rates {λk}
and {µk} using the formula (1.16) alone. For this reason, nearly all modeling applications

use the simple linear BDP since it is analytically tractable. Renshaw (2011) writes of the

need for an alternative approach to solving the forward system in order to find transition

probabilities for general BDPs:

“A worthwhile and potentially rewarding challenge would be to develop a sim-

plified and user-friendly version of this technique which would work over a wide

range of stochastic processes.”

The next section is devoted to this task.
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1.3 Numerical transition probabilities

We now outline a method, first presented in Crawford and Suchard (2011), for numerically

computing the transition probabilities for a general BDP with arbitrary birth and death

rates. To proceed, denote the Laplace transform of Pab(t) as

fab(s) = L [Pab(t)] (s) =

∫ ∞

0

e−stPab(t) dt. (1.32)

Now, applying the Laplace transform to (1.7) with a = 0, we have

sf00(s)− P00(0) = µ1f01(s)− λ0f00(s), and

sf0b(s)− P0b(0) = λn−1f0,b−1(s) + µb+1f0,b+1(s)− (λb + µb)f0b(s)
(1.33)

for b ≥ 1. Recalling that P00(0) = 1, and P0b(0) = 0 for b ≥ 1, we rearrange (1.33) to find

f00(s) =
1

s+ λ0 − µ1

(
f01(s)
f00(s)

) , and

f0b(s)

f0,b−1(s)
=

λb−1

s+ µb + λb − µb+1

(
f0,b+1(s)

f0b(s)

) .
(1.34)

By combining these recurrence relations, we obtain the generalized continued fraction

f00(s) =
1

s+ λ0 −
λ0µ1

s+ λ1 + µ1 −
λ1µ2

s+ λ2 + µ2 − · · ·

, (1.35)

which is an exact expression for the Laplace transform of the transition probability P0,0(t)

(Karlin and McGregor, 1957b; Bordes and Roehner, 1983; Guillemin and Pinchon, 1999;

Flajolet and Guillemin, 2000). Now define a1 = 1 and an = −λn−2µn−1, and b1 = s+λ0 and

bn = s+ λn−1 + µn−1 for n ≥ 2. Then (1.35) becomes

f00(s) =
a1

b1+

a2

b2+

a3

b3+
· · · . (1.36)

We denote the kth convergent of the Laplace transform f00(s) by

f
(k)
00 (s) =

a1

b1+

a2

b2+
· · · ak

bk
=
Ak(s)

Bk(s)
. (1.37)
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The main result of Crawford and Suchard (2011) is the following theorem giving continued

fraction expressions for the Laplace transform of the transition probability in a general birth-

death process.

Theorem 1. The Laplace transform of the transition probability Pab(t) is given by

fab(s) =





(
a∏

j=b+1

µj

)
Bb(s)

Ba+1(s)+

Ba(s)aa+2

ba+2+

aa+3

ba+3+
· · · for b ≤ a,

(
b−1∏

j=a

λj

)
Ba(s)

Bb+1(s)+

Bb(s)ab+2

bb+2+

ab+3

bb+3+
· · · for a ≤ b,

(1.38)

where an, bn, and Bn are as defined above.

The proof of this fact relies on elementary manipulation of the continued fraction re-

currences (1.34). Crawford and Suchard (2011) obtain time-domain transition probabilities

Pab(t) from (1.38) by numerically inverting the Laplace transforms. We refer the reader to

that publication for the computational details. The method returns transition probabilities

for many general BDPs that have eluded previous analytical and numerical methods.

1.4 Inference

Another factor hindering more widespread adoption of BDPs by applied researchers is the

difficulty in performing statistical estimation of the unknown parameters in a BDP using

real-world data (Holmes and Bruno, 2001; Doss et al, 2010). Typically efforts in estima-

tion for BPDs have been limited to continuous observation of the process (Moran, 1951,

1953; Anscombe, 1953; Darwin, 1956; Wolff, 1965; Reynolds, 1973). In addition, most work

to date has focused on the simple linear BDP because it is analytically tractable (Keid-

ing, 1975; Thorne et al, 1991; Dauxois, 2004; Rosenberg et al, 2003). However, in practice

researchers often observe data from BDPs only at discrete times through longitudinal sam-

pling. In addition, the simple linear BDP may be unappealing because it fails to capture

more complicated dynamics of population growth and decay that arise when particles do not
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behave independently. To learn from discretely observed general BDPs, we will need more

advanced statistical tools.

1.4.1 Likelihood for the continuously-observed process

In a discretely observed general BDP, the likelihood cannot be written in closed form,

making analytic maximum likelihood estimation impossible. However, the likelihood of a

continuously-observed BDP is straightforward to express (Reynolds, 1973; Keiding, 1975).

To develop the likelihood for continuously observed data from a general BDP, we note the

following important fact: the exponentially distributed waiting time of a continuous-time

Markov process in a certain state is independent of the destination of the next jump (Lange,

2010a). Recall that the waiting time W for the first event to occur from state k is exponen-

tially distributed with rate λk +µk. If the waiting time in the current state k is W = τ , and

the next change is a birth,

Pr(W = τ | birth, X(0) = k) = Pr(W = τ | X(0) = k) Pr(birth | X(0) = k)

= (λk + µk)e
−(λk+µk)τ

(
λk

λk + µk

)

= λke
−(λk+µk)τ .

(1.39)

Likewise, the probability of a waiting time W = τ followed by a death is

Pr(W = τ | death, X(0) = k) = µke
−(λk+µk)τ . (1.40)

Since we can only observe the process for a finite time t, the last observation will be the

waiting time in some state k from the time of the jump to k to the end of observation. Using

the same reasoning,

Pr(W ≥ τ | no births or deaths, X(0) = k) = e−(λk+µk)τ . (1.41)

To write the likelihood of a continuously-observed BDP from time 0 to t, we introduce

some notation to ease our presentation. Suppose we observe i = 1, . . . , n jumps. Let Wi

be the waiting time in the current state just before the ith jump. Define the indicator

Bi = 1 if the ith jump is a birth, and Bi = 0 if the ith jump is a death. Let t1, . . . , tn be
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the times of the n jumps, with t0 = 0. Then the likelihood of a sequence of observations

Y = {X(τ), 0 < τ < t} is

L =
n∏

i=1

Pr
(
Wi = ti − ti−1 | X(ti−1)

)

× Pr
(
birth | X(ti−1))Bi Pr(death | X(ti−1)

)1−Bi

× Pr
(
Wn+1 = t− tn | no births or deaths, X(tn)

)

=
n∏

i=1

(λX(ti−1) + µX(ti−1)) exp
[
−(λX(ti−1) + µX(ti−1))(ti − ti−1)

]

×
(

λBiX(ti−1)µ
1−Bi
X(ti−1)

λX(ti−1) + µX(ti−1)

)
× exp

[
−(λX(tn) + µX(tn))(t− tn)

]

=
n∏

i=1

λBiX(ti−1)µ
1−Bi
X(ti−1) exp

[
−(λX(ti−1) + µX(ti−1))(ti − ti−1)

]

× exp
[
−(λX(tn) + µX(tn))(t− tn)

]
,

(1.42)

where X(ti−1) is the state just before the ith jump. This cumbersome notation can be

eliminated if we instead keep track of the total waiting time in each state and the number of

births and deaths from each state. Define 1{E} to be the indicator of an event E, and let

Tk =
n∑

i=1

(ti − ti−1)1{X(ti−1) = k} (1.43)

be the total time spent in state k over all visits to k. Then let

Uk =
n∑

i=1

1{X(ti−1) = k,Bi = 1} (1.44)

be the number of up steps (births) from state k, and let

Dk =
n∑

i=1

1{X(ti−1) = k,Bi = 0} (1.45)

be the number of down steps (deaths) from state k. Then we can re-write the likelihood

(1.42) in much simpler and more transparent form as

L =
∞∏

k=0

λUkk µ
Dk
k exp[−(λk + µk)Tk]. (1.46)
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Figure 1.2: Sample trajectory of a birth-death counting process starting at X(0) = 1 showing

how to calculate the statistics Uk, Dk, and Tk from the continuously observed trajectory.

Of course, in a BDP observed continuously for a finite time (for which (1.28) holds), there

are only finitely many jumps observed, so the product above is not really infinite in practice.

Figure 3.1 shows an example of how to calculate the statistics Uk, Dk, and Tk for a given

continuously observed trajectory from a BDP. With the continuously-observed data likeli-

hood in hand, we seek a means of obtaining maximum likelihood estimates from discretely

observed data.

Maximum likelihood estimation for continuously-observed BDPs is often straightforward.

For example, consider the simple linear BDP with birth rate λk = kλ and death rate µk = kµ.

The likelihood (1.46) of a single observation becomes, up to a normalizing constant,

L ∝ λUµD exp

[
−(λ+ µ)

∫ t

0

X(τ) dτ

]
, (1.47)

where U =
∑

k Uk is the total number of up steps (births), U =
∑

kDk is the total number

of down steps (deaths) during the interval (0, t), and

∫ t

0

X(τ) dτ =
∞∑

k=0

kTk. (1.48)

Maximizing (1.47) with respect to the unknown parameters λ and µ, we obtain the maximum
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likelihood estimators

λ̂ =
U∫ t

0

X(τ) dτ

and µ̂ =
D∫ t

0

X(τ) dτ

. (1.49)

Although the estimators provided by (1.49) involve an integral over the state path of the

process, X(t) is simply a step function that is fully observed over (0, t).

1.4.2 Likelihood for the discretely observed process

Suppose now that the process X(τ) is observed only discretely, once at time 0 and again at

time t. Let us label the state of the BDP at these times as X(0) = a and X(t) = b. Then

given that X(0) = a, the probability that X(t) = b is the transition probability Pab(t). In

section 1.3 we outlined a method for numerically computing this probability for any general

BDP. If we regard the transition probability Pab(t) as a function of some unknown parameters

θ which control the birth and death rates, writing Pab(t|θ), then we have the likelihood of

our observation. In principle, we could numerically maximize the likelihood for discrete

observations to find an estimate of θ. However, as the number of parameters increases, näıve

numerical optimization often suffers from poor convergence.

1.5 Estimation via the EM algorithm

In this section, we review the estimation machinery developed by Crawford et al (2012a) for

maximum likelihood or maximum a posteriori estimation in BDPs. When a BDP is discretely

sampled, Uk, Dk, and Tk are unobserved for every k; we cannot maximize the likelihood

without knowing these statistics. We therefore appeal to the expectation-maximization (EM)

algorithm for iterative maximum likelihood estimation with missing data (Dempster et al,

1977). When the incomplete data likelihood is intractable but the complete data likelihood

has a simple form, the EM algorithm operates by replacing the each missing datum by a

conditional expectation as follows. If X is the complete (unobserved data), Y represents

the incomplete (observed) data, and `(θ|X) is the complete data log-likelihood, we form a
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surrogate function Q as the expectation of the complete data likelihood, conditional on the

observed data Y and the current (mth) parameter iterate:

Q
(
θ | θ(m)

)
= E

(
`(θ|X) | Y = y, θ(m)

)
. (1.50)

This is the E-step of the EM algorithm, and it accomplishes a minorization of `(θ) at θ(m).

The M-step maximizes (or takes a step toward the maximum of) Q. By alternating these

steps — minorizing ` by Q, then finding the θ that maximizes Q — the EM algorithm drives

succeeding iterates toward the MLE.

Taking the expectation of the logarithm of (1.46), conditional on the observed data

Y = (X(0) = a,X(t) = b, t) and the current parameter estimate θ(m), we write the surrogate

function for the BDP as follows:

Q
(
θ | θ(m)

)
= E

[
`(θ) | Y, θ(m)

]

=
∞∑

k=0

E(Uk|Y ) log
[
λk(θ)

]
+ E(Dk|Y ) log

[
µk(θ)

]
− E(Tk|Y )

[
λk(θ) + µk(θ)

]
,

(1.51)

In the above equation and many that follow, we omit the dependence of the conditional

expectations on θ(m) from the mth iterate for visual clarity.

To calculate the conditional expectations necessary for the E-step of the EM algorithm,

we appeal to the following integral expressions

E(Uk|Y ) =

∫ t

0

Pak(τ)λkPk+1,b(t− τ) dτ

Pab(t)
, (1.52a)

E(Dk|Y ) =

∫ t

0

Pak(τ)µkPk−1,b(t− τ) dτ

Pab(t)
, and (1.52b)

E(Tk|Y ) =

∫ t

0

Pak(τ)Pkb(t− τ) dτ

Pab(t)
(1.52c)

(Lange, 1995a; Holmes and Rubin, 2002; Bladt and Sorensen, 2005; Hobolth and Jensen,

2005; Metzner et al, 2007). Since the Laplace transforms fa,b(s) of these transition proba-

bilities can be computed via Theorem 1, we appeal to the Laplace convolution property to
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obtain

E(Uk|Y ) = λk
L −1

[
fak(s) fk+1,b(s)

]
(t)

Pab(t)
, (1.53a)

E(Dk|Y ) = µk
L −1

[
fak(s) fk−1,b(s)

]
(t)

Pab(t)
, and (1.53b)

E(Tk|Y ) =
L −1

[
fak(s) fkb(s)

]
(t)

Pab(t)
, (1.53c)

where L−1 denotes inverse Laplace transformation. These expressions are formally equivalent

to (3.12), but they offer substantial computational time savings over numerical integration of

(3.12), and make possible efficient computation of conditional expectations for EM algorithms

for any BDP.

1.6 EM algorithms in evolutionary inference

1.6.1 Simple linear BDP

In the simple linear BDP (also known as the “Kendall process”), births and deaths happen

at constant per-particle rates, so λk = kλ and µk = kµ. The unknown is θ = (λ, µ). The

surrogate function Q becomes

Q(θ) =
∞∑

k=0

E(Uk|Y ) log[kλ] + E(Dk|Y ) log[kµ]− E(Tk|Y )k(λ+ µ). (1.54)

Maximizing (3.14) with respect to the θ yields the updates:

λ(m+1) =
E(U |Y )

E(Tparticle|Y )
, and (1.55a)

µ(m+1) =
E(D|Y )

E(Tparticle|Y )
. (1.55b)

1.6.2 Linear BDP with immigration

The linear BDP with immigration is similar to the simple linear BDP, but there is a source

of new arrivals whose rate is not proportional to the number of individual particles already

in existence. The rate of new immigrants is constant, making the immigration component of
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this BDP a Poisson process. This yields the birth and death rates λk = kλ+ ν and µk = kµ.

The log-likelihood becomes

`(θ) =
∞∑

k=0

Uk log(kλ+ ν) +Dk log(µ)− Tk[k(λ+ µ) + ν]. (1.56)

Unfortunately, it is difficult to maximize this surrogate function analytically. Since each term

in the sum is a concave function of the unknown parameters, we can separate them in a second

minorizing function H such that for all θ, H
(
θ|θ(m)

)
≤ `(θ) and H

(
θ(m)|θ(m)

)
= `
(
θ(m)

)
. To

accomplish the minorization, note that

log(kλ+ν) ≥ kλ(m)

kλ(m) + ν(m)
log

[
kλ(m)

kλ(m) + ν(m)
λ

]
+

ν(m)

kλ(m) + ν(m)
log

[
ν(m)

kλ(m) + ν(m)
ν

]
. (1.57)

We form a minorizing log-likelihood function H as follows:

`(θ) ≥ H
(
θ|θ(m)

)

=
∞∑

k=0

Uk
[
pk log

(
pkλ
)

+ (1− pk) log
(
(1− pk)ν

)]
+Dk log(µ)−

[
k(λ+ µ) + ν

]
Tk,

(1.58)

where

pk =
kλ(m)

kλ(m) + ν(m)
. (1.59)

Then letting Q
(
θ | θ(m)

)
= E

(
H(θ) | Y, θ(m)

)
be the surrogate function and maximizing with

respect to the unknowns gives the updates

λ(m+1) =

∞∑

k=0

pkE(Uk|Y )

E(Tparticle|Y )
, and (1.60a)

ν(m+1) =

∞∑

k=0

(1− pk)E(Uk|Y )

t
. (1.60b)

The update for µ is the same as (3.15b).

1.6.3 Moran model

The Moran model is a popular model for genetic drift in continuous time. In its simplest

incarnation, the process keeps track of the number of alleles of a certain type at a biallelic
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locus in a haploid population of constant size N < ∞. Call the two alleles A and B, and

suppose we wish to keep track of the number of A carriers in the population. In the Moran

model with selection, carriers of A have fitness α, and carriers of B have fitness β. For the

sake of identifiability in a statistical setting, we specify β = 1 and let α denote the relative

fitness of A carriers over B carriers. In the moran model with mutation, A mutates to B

in one generation with probability u, and B mutates to A with probability v. Selection

enters the process when an existing individual dies. A replacement allele is drawn from the

population (including the individual that dies). Once this replacement allele is chosen, it is

subjected to mutation. If we let X(t) be the number of A alleles in the population at time

t, the rate of additions of new A carriers is

λn =
N − n
N

[
α
n

N
(1− u) +

N − n
N

v

]
, (1.61)

for n = 0, . . . , N with λn = 0 when n > N . The rate of removals of A carriers is

µn =
n

N

[
N − n
N

(1− v) + α
n

N
u

]
, (1.62)

Then X(t) is a general BDP with these birth and death rates.

Maximizing the log-likelihood with respect to the unknowns α, u, and v is difficult. How-

ever, following the example of the previous section, we can construct a minorizing function

to separate the parameters in the logarithm terms. Note that we can minorize the birth rate

as

log(λn) ∝ log [nα(1− u) + (N − n)v]

≥ p(m)
n log

(
p(m)
n nα(1− u)

)
+ (1− p(m)

n ) log
(
(1− p(m)

n )(N − n)v
)

∝ p(m)
n

(
log(α) + log(1− u)

)
+ (1− p(m)

n ) log(v),

(1.63)

where

p(m)
n =

nα(m)(1− u(m))

nα(m)(1− u(m)) + (N − n)v(m)
. (1.64)

Likewise, we minorize the death rate as

log(µn) ∝ log [(N − n)(1− v) + nαu]

≥ q(m)
n log

(
q(m)
n (N − n)(1− v)

)
+ (1− q(m)

n ) log
(
q(m)
n nαu

)

∝ q(m)
n log(1− v) + (1− q(m)

n )
(

log(α) + log(u)
)
,

(1.65)
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where

q(m)
n =

(N − n)(1− v(m))

(N − n)(1− v(m)) + nα(m)u(m)
. (1.66)

Now, we form the minorizing function H as

`(θ) ≥ H(θ)

=
N∑

k=0

Bk

[
p

(m)
k

(
log(α) + log(1− u)

)
+ (1− p(m)

k ) log(v)
]

+Dk

[
q

(m)
k log(1− v) + (1− q(m)

k )
(

log(α) + log(u)
)]

− Tk
N2

[
(N − k)kα(1− u) + (N − k)2v + (N − k)k(1− v) + k2αu

]
.

(1.67)

One simple way to proceed is to find updates for each of the unknowns, conditional on the

previous (mth) estimate of the others. The update for α is

α(m+1) =

N∑

k=0

p
(m)
k Bk + (1− q(m)

k )Dk

1

N2

N∑

k=0

Tk
[
(N − k)k(1− u(m)) + k2u(m)

]
. (1.68)

For the sake of brevity, we give the update for u as the solution of the quadratic equation

N∑

k=0

−uBkp
(m)
k + (1− u)Dk(1− q(m)

k )− u(1− u)
Tk
N2

[
k2α(m) − (N − k)kα(m)

]
= 0. (1.69)

The update for v is similar.

1.6.4 Maximum a posteriori estimation

In a Bayesian setting, a prior distribution f(θ) on the unknown parameters θ is given,

and we seek to maximize the log-posterior distribution of the parameters, given the data,

Pr(θ | Y ) ∝ Pr(Y | θ)f(θ) to obtain the maximum a posteriori (MAP) estimate of θ. Then

the surrogate function becomes Q
(
θ|θ(m)

)
= E

(
`(θ)|Y, θ(m)

)
+ log [f (θ)].

To illustrate, suppose that independent observations Yi from a BDP follow the simple lin-

ear model, and we believe that λ and µ are a priori independent and are Gamma-distributed:

λ ∼ Gamma(kλ, βλ) and µ ∼ Gamma(kµ, βµ). (1.70)
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Then the unknowns are θ = (λ, µ) and the log-prior for θ is

log f(θ) ∝ (kλ − 1) log(λ) + (kµ − 1) log(µ)− λ

βλ
− µ

βµ
. (1.71)

Ignoring irrelevant terms, the surrogate function becomes

Q
(
θ|θ(m)

)
= E(U |Y ) log(λ) + E(D|Y ) log(µ)− E(Tparticle|Y )(λ+ µ)

+ (kλ − 1) log(λ) + (kµ − 1) log(µ)− λ

βλ
− µ

βµ

(1.72)

The updates are

λ(m+1) =
E(U |Y ) + kλ − 1

E(Tparticle|Y ) + 1
βλ

, and (1.73a)

µ(m+1) =
E(D|Y ) + kµ − 1

E(Tparticle|Y ) + 1
βµ

. (1.73b)

1.7 Numerical example

Microsatellites are short repeated motifs of bases in DNA sequences (Schlötterer, 2000; El-

legren, 2004; Richard et al, 2008). The number of repeated motifs in a microsatellite can

change during the DNA replication phase of meiosis. One widely accepted theory regarding

the origin of microsatellite repeat number changes posits that the molecular machinery that

places new nucleotide bases on the template DNA strand can slip and misalign the new bases

so that they are staggered with respect to the template strand; this is known as “polymerase

slippage” (Schlötterer, 2000). Intuitively, a microsatellite with k repeats offers k opportu-

nities for strand mismatch due to polymerase slippage during each meiosis. Generalizing to

continuous evolutionary time, it is reasonable to model the process of repeat additions and

deletions as a Markov chain in which only jumps to adjacent positive integers are possible.

Indeed, many researchers have proposed linear BDPs to study repeat number evolution in

microsatellites (Whittaker et al, 2003; Calabrese and Durrett, 2003; Sainudiin et al, 2004).

In this section, we apply our methods to the problem of chimpanzee-human microsatellite

evolution, drawing on the data in Table 6 of the supplementary information in Webster

et al (2002). Figure 3.3 shows the repeat numbers for the orthologous microsatellites in
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Figure 1.3: Number of repeats in chimpanzees and humans for 2467 orthologous microsatel-

lite loci. The counts are jittered to show the density, and the gray line denotes equal number

of repeats between each species.
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chimpanzees plotted against the corresponding number of repeats in humans. The data are

jittered slightly to show the density of observations for each set of counts. To simplify the

inference task, we regard chimpanzees as the ancient ancestors of modern-day humans and

model the evolution of microsatellite repeat numbers as a simple linear BDP over a fixed

evolutionary time scaled to unity. Since we do not observe the evolutionary trajectory of

microsatellite repeat numbers from chimpanzees to humans, we regard the counts as discrete

observations from a BDP. For microsatellite i, we let Xi(0) be the number of repeats in

chimpanzees, and Xi(1) be the number in humans. We further assume that the birth and

death rates are the same for every microsatellite in the dataset, and that microsatellites are

ascertained randomly and without regard to repeat number. Crawford et al (2012a) explore

these issues in far greater detail. Figure 3.2 shows the iterates of the EM algorithm to fit the

simple linear BDP to the microsatellite repeat number data, superimposed on the contours

of the likelihood function.

25



0.20 0.25 0.30 0.35 0.40

0.
20

0.
25

0.
30

0.
35

0.
40

+

+ +++++++
++++

+++++
++++++++

+++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Figure 1.4: Iterates of the EM algorithm for the microsatellite evolution dataset converging

to the MLE (λ = 0.3405, µ = 0.2147).
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CHAPTER 2

Transition probabilities for general birth-death

processes with applications in ecology, genetics, and

evolution

A birth-death process is a continuous-time Markov chain that counts the number of particles

in a system over time. In the general process with n current particles, a new particle is born

with instantaneous rate λn and a particle dies with instantaneous rate µn. Currently no

robust and efficient method exists to evaluate the finite-time transition probabilities in a

general birth-death process with arbitrary birth and death rates. In this paper, we first

revisit the theory of continued fractions to obtain expressions for the Laplace transforms of

these transition probabilities and make explicit an important derivation connecting transition

probabilities and continued fractions. We then develop an efficient algorithm for computing

these probabilities that analyzes the error associated with approximations in the method. We

demonstrate that this error-controlled method agrees with known solutions and outperforms

previous approaches to computing these probabilities. Finally, we apply our novel method

to several important problems in ecology, evolution, and genetics.

2.1 Introduction

Birth-death processes (BDPs) have a rich history in probabilistic modeling, including appli-

cations in ecology, genetics, and evolution (Thorne et al, 1991; Krone and Neuhauser, 1997;

Novozhilov et al, 2006). Traditionally, BDPs have been used to model the number of organ-

isms or particles in a system, each of which reproduce and die in continuous time. A general
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BDP is a continuous-time Markov chain on the non-negative integers in which instantaneous

transitions from state n ≥ 0 to either n+1 or n−1 are possible. These transitions are called

“births” and “deaths”. Starting at state n, jumps to n+ 1 occur with instantaneous rate λn

and jumps to n− 1 with instantaneous rate µn. The simplest BDP has linear rates λn = nλ

and µn = nµ with no state-independent terms (Kendall, 1948; Feller, 1971). This model is

the most widely-used BDP since there exist closed-form expressions for its transition proba-

bilities (Bailey, 1964; Novozhilov et al, 2006). Many applications of BDPs require convenient

methods for computing the probability Pm,n(t) that the system moves from state m to state

n in finite time t ≥ 0. These probabilities exhibit their usefulness in many modeling ap-

plications since the probabilities do not depend on the possibly unobserved path taken by

the process from m to n and hence make possible analyses of discretely sampled or partially

observed processes. Despite the relative simplicity of specifying the rates of a general BDP,

it can be remarkably difficult to find closed-form solutions for the transition probabilities

even for simple models (Renshaw, 1993; Mederer, 2003; Novozhilov et al, 2006).

In a pioneering series of papers, Karlin and McGregor develop a formal theory of general

BDPs that expresses their transition probabilities in terms of a sequence of orthogonal poly-

nomials and a spectral measure (Karlin and McGregor, 1957a,b, 1958b). While the work of

Karlin and McGregor yields valuable theoretical insights regarding the existence of unique

solutions and properties of recurrence and transience for a given process, there remains no

clear recipe for determining the orthogonal polynomials and measure corresponding to an

arbitrary set of birth and death rates. Additionally, even when the polynomials and mea-

sure are known, the transition probabilities may not have an analytic representation or a

convenient computational form.

Possibly due to the difficulty of finding computationally useful formulas for transition

probabilities in general BDPs, many applied researchers resort to easier analyses using mo-

ments, first passage times, equilibrium probabilities, and other tractable quantities of in-

terest. Referring to the system of Kolmogorov forward differential equations for transition

probabilities that we give below, Novozhilov et al (2006, page 73) write,
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“The problem with exact solutions of system (1) is that, in many cases, the

expressions for the state probabilities, although explicit, are intractable for anal-

ysis and include special polynomials. In such cases, it may be sensible to solve

more modest problems concerning the birth-and-death process under considera-

tion, without the knowledge of the time-dependent behavior of state probabilities

pn(t).”

Indeed, closed-form analytic expressions for transition probabilities of general BDPs are only

known for a few types of processes. Some examples include constant birth and death rates

(Bailey, 1964), zero birth or death rates (pure-death and pure-birth) (Yule, 1925; Taylor

and Karlin, 1998), and certain linear rates (Karlin and McGregor, 1958a). As a seemingly

straightforward example, in the BDP with linear birth and death rates λn = nλ + ν and

µn = nµ + γ including state-independent terms, Ismail et al (1988) offer the orthogonal

polynomials and associated measure, but still no closed form is available for the transition

probabilities.

Despite the difficulty in obtaining analytic expressions, several authors have made progress

in approximate numerical methods for solution of transition probabilities in general BDPs.

Murphy and O’Donohoe (1975) develop an appealing numerical method for the transition

probabilities based on a continued fraction representation of Laplace-transformed transition

probabilities. They invert these transformed probabilities by first truncating the continued

fraction. Several other authors give similar expressions derived from truncation of the state

space (Grassmann, 1977b,a; Rosenlund, 1978; Sharma and Dass, 1988; Mohanty et al, 1993).

However, Klar et al (2010) find that methods based on continued fraction truncation and

then subsequent analytical transformation can suffer from instability. As an alternative,

Parthasarathy and Sudhesh (2006a) express the infinite continued fraction representation

given by Murphy and O’Donohoe as a power series. Unfortunately, the small radius of

convergence of this series makes it less useful for numerical computation.

We also note that for general BDPs that take values on a finite state space (usually

n ∈ {0, 1, . . . , N}), it is possible to write a finite-dimensional stochastic transition rate ma-
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trix and solve for the matrix of transition probabilities. If the rate matrix is diagonalizable,

computation of transition probabilities in this manner can be computationally straightfor-

ward. To illustrate, let Q be a finite-dimensional stochastic rate matrix with Q = UΛU−1

where U is an orthogonal matrix and Λ is diagonal. The matrix of transition probabili-

ties P satisfies the matrix differential equation P ′ = PQ with initial condition P (0) = I.

The solution is P (t) = exp[Qt] = U diag(ez1t, ez2t, . . . , ezN t) U−1, where z1, . . . , zN are the

eigenvalues of Q. However, it is possible to specify reasonable rate parameters in a general

BDP that satisfy requirements for the existence of a unique solution, but do not result in a

diagonalizable rate matrix. Also, if the state space over which the BDP takes values is large,

numerical eigendecomposition of Q may be computationally expensive and could introduce

serious roundoff errors.

To our knowledge, no robust computational method currently exists for finding the finite-

time transition probabilities of general BDPs with arbitrary rates. Such a technique would

allow rapid development of rich and sophisticated ecological, genetic, and evolutionary mod-

els. Additionally, in statistical applications, transition probabilities can serve as observed

data likelihoods, and are thus often useful in estimating transition rate parameters from par-

tially observed BDPs. We believe more sophisticated BDPs can be very useful for applied

researchers. In spite of the numerical difficulties presented by approximant methods, we are

surprised that continued fraction methods like that of Murphy and O’Donohoe (1975) are not

more widely explored. This may be due to omission of important details in their derivation

of continued fraction expressions for the Laplace transform of the transition probabilities.

In this paper, we build on continued fraction expressions for the Laplace transforms of

the transition probabilities of a general BDP using techniques similar to those introduced

by Murphy and O’Donohoe, and we fill in the missing details in the proof of this repre-

sentation. We then apply the Laplace inversion formulae of Abate and Whitt (1992a,b) to

obtain an efficient and robust method for computation of transition probabilities in general

BDPs. Our method relies on three observations: 1) it is possible to find exact expressions

for Laplace transforms of the transition probabilities of a general BDP using continued frac-

tions (Murphy and O’Donohoe, 1975); 2) evaluation of continued fractions is typically very
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fast, requires far fewer evaluations than equivalent power series, and there exist robust al-

gorithms for evaluating them efficiently (Bankier and Leighton, 1942; Wall, 1948; Blanch,

1964; Lorentzen and Waadeland, 1992; Craviotto et al, 1993; Abate and Whitt, 1999; Cuyt

et al, 2008); and 3) recovery of probability distributions by Laplace inversion using a Rie-

mann sum approximation is often more computationally stable than analytical methods of

inversion (Abate and Whitt, 1992a,b, 1995). Finally, we demonstrate the advantages of our

error-controlled method through its application to several birth-death models in ecology,

genetics, and evolution whose solution remains unavailable by other means.

2.2 Transition probabilities

2.2.1 Background

A general birth-death process is a continuous-time Markov process X = {X(t), t ≥ 0}
counting the number of arbitrarily defined “particles” in existence at time t ≥ 0, with

X(0) = m ≥ 0. To characterize the process, we define non-negative instantaneous birth

rates λn and death rates µn for n ≥ 0, with µ0 = 0 and transition probabilities Pm,n(t) =

Pr(X(t) = n | X(0) = m). While λn and µn are time-homogeneous constants, they may

depend on n. We refer to the classical linear BDP in which λn = nλ and µn = nµ as

the “simple birth-death process” (Kendall, 1948; Feller, 1971). The general BDP transition

probabilities satisfy the infinite system of ordinary differential equations

dPm,0(t)

dt
= µ1Pm,1(t)− λ0Pm,0(t), and

dPm,n(t)

dt
= λn−1Pm,n−1(t) + µn+1Pm,n+1(t)− (λn + µn)Pm,n(t) for n ≥ 1,

(2.1)

with boundary conditions Pm,m(0) = 1 and Pm,n(0) = 0 for n 6= m (Feller, 1971).

Karlin and McGregor (1957b) show that for arbitrary starting state m, transition prob-

abilities can be represented in the form

Pm,n(t) = πn

∫ ∞

0

e−xtQm(x)Qn(x)ψ(dx), (2.2)
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where π0 = 1 and πn = (λ0 · · ·λn−1)/(µ1 · · ·µn) for n ≥ 1. Here, {Qn(x)} is a sequence of

polynomials satisfying the three-term recurrence relation

λ0Q1(x) = λ0 + µ0 − x, and

λnQn+1(x) = (λn + µn − x)Qn(x)− µnQn−1(x),
(2.3)

and ψ is the spectral measure of X with respect to which the polynomials {Qn(x)} are

orthogonal. The system (5.2) has a unique solution if and only if

∞∑

k=0

(
πk +

1

λkπk

)
=∞. (2.4)

In what follows, we assume that the rate parameters {λn} and {µn} satisfy (2.4). Closed-

form solutions to (5.2) are available for a surprisingly small number of choices of {λn} and

{µn}. We therefore need another approach to find useful formulae for computation of the

transition probabilities.

2.2.2 Continued fraction representation of Laplace transform

To find an expression that is useful for computing Pm,n(t) for an arbitrary general BDP, a

fruitful approach is often to Laplace transform each equation of the system (5.2) and form

a recurrence relationship relating back to the Laplace transform of Pm,n(t). We base our

presentation on that of Murphy and O’Donohoe (1975). Denote the Laplace transform of

Pn,m(t) as

fm,n(s) = L [Pm,n(t)] (s) =

∫ ∞

0

e−stPm,n(t) dt. (2.5)

Applying the Laplace transform to (5.2), with the starting state m = 0, we arrive at

sf0,0(s)− P0,0(0) = µ1f0,1(s)− λ0f0,0(s), and

sf0,n(s)− P0,n(0) = λn−1f0,n−1(s) + µn+1f0,n+1(s)− (λn + µn)f0,n(s)
(2.6)

for n ≥ 1. Rearranging and recalling that P0,0(0) = 1 and P0,n(0) = 0 for n ≥ 1, we simplify

(5.4) to

f0,1(s) =
1

µ1

[
(s+ λ0)f0,0(s)− 1

]
, and

f0,n(s) =
1

µn

[
(s+ λn−1 + µn−1)f0,n−1(s)− λn−2f0,n−2(s)

]
for n ≥ 2.

(2.7)
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Some rearranging of (2.7) yields the forward system of recurrence relations

f0,0(s) =
1

s+ λ0 − µ1

(
f0,1(s)

f0,0(s)

) , and

f0,n(s)

f0,n−1(s)
=

λn−1

s+ µn + λn − µn+1

(
f0,n+1(s)

f0,n(s)

) .
(2.8)

Then combining these expressions, we arrive at the generalized continued fraction

f0,0(s) =
1

s+ λ0 −
λ0µ1

s+ λ1 + µ1 −
λ1µ2

s+ λ2 + µ2 − · · ·

. (2.9)

This is an exact expression for the Laplace transform of the transition probability P0,0(t). Let

the partial numerators in (5.5) be a1 = 1 and an = −λn−2µn−1, and the partial denominators

b1 = s+ λ0 and bn = s+ λn−1 + µn−1 for n ≥ 2. Then (5.5) becomes

f0,0(s) =
a1

b1 +
a2

b2 +
a3

b3 + · · ·

. (2.10)

To express (3.6) in more typographically economical notation, we write

f0,0(s) =
a1

b1+

a2

b2+

a3

b3+
· · · . (2.11)

We denote the kth convergent (approximant) of f0,0(s) as

f
(k)
0,0 (s) =

a1

b1+

a2

b2+
· · · ak

bk
=
Ak(s)

Bk(s)
. (2.12)

There are deep connections between the orthogonal polynomial representation (2.3), Laplace

transforms (2.7), and continued fractions of the form (5.5) that are beyond the scope of this

paper (Karlin and McGregor, 1957b; Bordes and Roehner, 1983; Guillemin and Pinchon,

1999). Interestingly, Flajolet and Guillemin (2000) demonstrate a close relationship between

the Laplace transforms of transition probabilities and state paths of the underlying Markov

chain.
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Before stating a theorem supporting this representation, we give two lemmas that will

be useful in what follows.

Lemma 1. Both the numerator Ak and denominator Bk of (3.7) satisfy the same recurrence,

due to Wallis (1695):

Ak = bkAk−1 + akAk−2, and

Bk = bkBk−1 + akBk−2,
(2.13)

with A0 = 0, A1 = a1, B0 = 1, and B1 = b1.

Lemma 2. By repeated application of Lemma 1, we arrive at the determinant formula

AkBk−1 − Ak−1Bk = (bkAk−1 + akAk−2)Bk−1 − Ak−1(bkBk−1 + akBk−2)

= −ak(Ak−1Bk−2 − Ak−2Bk−1)

= (−1)k−1

k∏

i=1

ai.

(2.14)

Now we state and prove a theorem giving expressions for the Laplace transform of Pm,n(t).

Although Murphy and O’Donohoe (1975) first report this result, they do not provide a

detailed derivation in their paper.

Theorem 1. The Laplace transform of the transition probability Pm,n(t) is given by

fm,n(s) =





(
m∏

j=n+1

µj

)
Bn(s)

Bm+1(s)+

Bm(s)am+2

bm+2+

am+3

bm+3+
· · · for n ≤ m,

(
n−1∏

j=m

λj

)
Bm(s)

Bn+1(s)+

Bn(s)an+2

bn+2+

an+3

bn+3+
· · · for m ≤ n,

(2.15)

where an, bn, and Bn are as defined above.

Proof. To simplify notation, we sometimes omit the dependence of fk, Ak, and Bk on the

Laplace variable s. Suppose the process starts at X(0) = m. We can re-write the Laplace-

transformed equations (5.4) with Pm,m(0) = 1 and Pm,n(0) = 0 for all n 6= m as

sfm,0(s)− δm0 = µ1fm,1(s)− λ0fm,0(s), (2.16a)

sfm,n(s)− δmn = λn−1fm,n−1(s) + µn+1fm,n+1(s)− (λn + µn)fm,n(s), (2.16b)
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where δmn = 1 if m = n and zero otherwise. We first derive the expression for n ≤ m. If

m = 0, f0,0(s) is given by (2.11), so we assume in what follows when n ≤ m, that m ≥ 1.

Rearranging (2.16a), we see that since B0 = 1 and s+ λ0 = b1 = B1,

fm,0 =
B0

B1

µ1fm,1. (2.17)

Now, to show the general case by induction, assume that for n ≤ m,

fm,n−1 =
Bn−1

Bn

µnfm,n. (2.18)

Substituting (2.18) into (4.58) when n < m, we have

bn+1fm,n = λn−1
Bn−1

Bn

µnfm,n + µn+1fm,n+1 (2.19)

(
bn+1 + an+1

Bn−1

Bn

)
fm,n = µn+1fm,n+1 (2.20)

fm,n =
Bn

Bn+1

µn+1fm,n+1 (2.21)

and so (2.18) is true for any n < m. Letting n = m, we have by (2.18) and (4.58),

bm+1fm,m = 1 + λm−1

(
Bm−1

Bm

µmfm,m

)
+ µm+1fm,m+1. (2.22)

Recalling that s+ λm + µm = bm+1 and using Lemma 1,

µm+1fm,m+1 = 1− Bm+1

Bm

fm,m. (2.23)

Rearranging the previous equation, we find that

fm,m =
1

Bm+1

Bm
+ µm+1

fm,m+1

fm,m

. (2.24)

Likewise, we can write (4.58) as a continued fraction recurrence:

fm,n
fm,n−1

=
λn−1

s+ µn + λn + µn+1
fm,n+1

fm,n

. (2.25)

Then plugging (2.25) into (2.24) and iterating, we obtain the continued fraction for fm,m:

fm,m =
1

Bm+1

Bm
+

am+2

bm+2+

am+3

bm+3+
· · ·

=
Bm

Bm+1+

Bmam+2

bm+2+

am+3

bm+3+
· · · .

(2.26)
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This is an exact formula for the Laplace transform of Pm,m(t), and proves the case m = n.

For n ≤ m, we iterate (2.18) to get

fm,n =
Bn

Bn+1

µn+1fm,n+1

=
Bn

Bn+1

Bn+1

Bn+2

µn+1µn+2fm,n+2

=
Bn

Bn+1

Bn+1

Bn+2

· · · Bm−1

Bm

µn+1µn+2 · · ·µmfm,m

=

(
m∏

j=n+1

µj

)
Bn

Bm

fm,m.

(2.27)

Substituting (2.26) for fm,m completes the proof for n ≤ m.

To find the formula for fm,n when n > m, we adopt a similar approach. From (2.24) we

arrive at

Bm+1fm,m = Bm −Bmµm+1fm,m+1. (2.28)

We proceed inductively. Assume that for n > m,

Bn+1fm,n =

(
n−1∏

j=m

λj

)
Bm + µn+1Bnfm,n+1. (2.29)

From (4.58), we have

bn+2fm,n+1 = λnfm,n + µn+2fm,n+2. (2.30)

Solving for fm,n in (2.29) and plugging this into the above equation, we have

bn+2fm,n+1 = λn

(
n−1∏

j=m

λj

)
Bm

Bn+1

+ λnµn+1
Bn

Bn+1

fm,n+1 + µn+2fm,n+2. (2.31)

Recalling that −λnµn+1 = an+2,

(bn+2Bn+1 + an+2Bm) fm,n+1 =

(
n∏

j=m

λj

)
Bn + µn+2Bn+1fm,n+2, (2.32)

and by Lemma 1,

Bn+2fm,n+1 =

(
n∏

j=m

λj

)
Bm + µm+2Bn+1fm,m+2. (2.33)

36



This establishes the recurrence (2.29). Then for any n ≥ m, we can rearrange (2.29) to

obtain

fm,n =

(
n−1∏

j=m

λj

)
Bm

Bn+1 −Bnµn+1
fm,n+1

fm,n

. (2.34)

This completes the proof.

2.2.3 Obtaining transition probabilities

Murphy and O’Donohoe (1975) find transition probabilities by truncating (2.15) at a pre-

specified depth, forming a partial fractions sum, and inverse transforming. Parthasarathy

and Sudhesh (2006a) give a series solution for transition probabilities based on an equivalence

between continued fractions like (2.15) and power series. However, both of these approaches

suffer from serious drawbacks, as we explore in detail in the Appendix.

We instead seek an efficient and robust numerical method for evaluating and inverting

(2.15). We first note that continued fractions typically converge rapidly, and in our experi-

ence, evaluation of (2.15) is very fast and stable using the Lentz algorithm and its subsequent

improvements (Lentz, 1976; Thompson and Barnett, 1986; Press, 2007). We therefore invert

(2.15) numerically by a summation formula.

To do this, we treat the continued fraction representation (2.15) of the Laplace transform

of Pm,n(t) as an unknown but computable function of the complex Laplace variable s. We

base our presentation on that of Abate and Whitt (1992a). If ε is a positive real number such

that all singularities of fm,n(s) lie to the left of ε in the complex plane, the inverse Laplace

transform of fm,n(s) is given by the Bromwich integral

Pm,n(t) = L−1 (fm,n(s)) =
1

2πi

∫ ε+i∞

ε−i∞
estfm,n(s) ds. (2.35)
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Letting s = ε+ iu,

Pm,n(t) =
1

2π

∫ ∞

−∞
e(ε+iu)tfm,n(ε+ iu) du

=
eεt

2π

∫ ∞

−∞

[
cos(ut) + i sin(ut)

]
fm,n(ε+ iu) du

=
eεt

2π

[∫ ∞

−∞

[
Re
(
fm,n(ε+ iu)

)
cos(ut)− Im

(
fm,n(ε+ iu)

)
sin(ut)

]
du

+ i

∫ ∞

−∞

[
Im
(
fm,n(ε+ iu)

)
cos(ut) + Re

(
fm,n(ε+ iu)

)
sin(ut)

]
du

]
,

(2.36)

but Pm,n(t) is real-valued, so the imaginary part of the last equality in (2.36) is zero. Then

Pm,n(t) =
eεt

2π

∫ ∞

−∞

[
Re
(
fm,n(ε+ iu)

)
cos(ut)− Im

(
fm,n(ε+ iu)

)
sin(ut)

]
du. (2.37)

But since Pm,n(t) = 0 for t < 0, we also have that

∫ ∞

−∞

[
Re
(
fm,n(ε+ iu)

)
cos(ut) + Im

(
fm,n(ε+ iu)

)
sin(ut)

]
du = 0. (2.38)

Then applying (2.38) to (2.37), we obtain

Pm,n(t) =
eεt

π

∫ ∞

−∞
Re
(
fm,n(ε+ iu)

)
cos(ut) du. (2.39)

Finally, we note that since

Re
(
f(ε− iu)

)
=

∫ ∞

0

e−εt cos(ut)Pm,n(t) dt = Re
(
f(ε+ iu)

)
, (2.40)

it must be the case that Re
(
fm,n(ε+ iu)

)
is even in u for every ε. Therefore,

Pm,n(t) =
2eεt

π

∫ ∞

0

Re
(
fm,n(ε+ iu)

)
cos(ut) du. (2.41)

Following Abate and Whitt (1992a), we approximate the integral above by a discrete

Riemann sum via the trapezoidal rule with step size h:

Pm,n(t) ≈ heεt

π
Re (fm,n(ε)) +

2heεt

π

∞∑

k=1

Re (fm,n(ε+ ikh)) cos(kht)

=
eA/2

2t
Re

(
fm,n

(
A

2t

))
+
eA/2

t

∞∑

k=1

(−1)kRe

(
fm,n

(
A+ 2kπi

2t

))
,

(2.42)

where the second line is obtained by setting h = π/(2t) and ε = A/(2t); this change of

variables eliminates the cosine term.
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2.2.4 Numerical considerations

While (4.66) presents a method for numerical solution of the transition probabilities Pm,n(t)

for a BDP with arbitrary birth and death rates, it is not yet an algorithm for reliable

evaluation of these probabilities. In order to develop a reliable numerical method, we must:

1) characterize the error introduced by discretization of the integral in (2.41); 2) determine

a suitable method to evaluate this nearly alternating sum while controlling the error; and 3)

accurately and rapidly evaluate the infinite continued fraction in (2.15).

Abate and Whitt show that the discretization error that arises in (4.66) is

ed =
∞∑

k=1

e−kAPm,n
(
(2k + 1)t

)
, (2.43)

and when Pm,n(t) ≤ 1,

ed ≤
∞∑

k=1

e−kA =
e−A

1− e−A ≈ e−A, (2.44)

when e−A is small. Then to obtain ed ≤ 10−γ, we set A = γ log(10). As Abate and Whitt

point out, the terms of the series (4.66) alternate in sign when

Re

(
fm,n

(
A+ 2kπi

2t

))
(2.45)

has constant sign. This suggests that a series acceleration method may be helpful in keeping

the terms of the sum manageable and avoiding roundoff error due to summands of alternating

sign. We opt to use the Levin transform for this purpose (Levin, 1973; Press, 2007; Numerical

Recipes Software, 2007).

Evaluation of rational approximations to continued fractions by repeated application

of Lemma 1 is appealing, but suffers from roundoff error when denominators are small

(Press, 2007). To evaluate the infinite continued fraction in the summand of (4.66), we

use the modified Lentz method (Lentz, 1976; Thompson and Barnett, 1986; Press, 2007).

To demonstrate, suppose we wish to approximate the value of f0,0(s), given by (5.5) by

truncating at depth k. Then

f
(k)
0,0 (s) =

Ak(s)

Bk(s)
(2.46)
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is the kth rational approximant to the infinite continued fraction f0,0(s). In the modified

Lentz method, we stabilize the computation by finding the ratios

Ck =
Ak
Ak−1

and Dk =
Bk−1

Bk

(2.47)

so that f
(k)
0,0 can be found iteratively by

f
(k)
0,0 = f

(k−1)
0,0 CkDk. (2.48)

Using Lemma 1, we can iteratively compute Ck and Dk via the updates

Ck = bk +
ak
Ck−1

and Dk =
1

bk + akDk−1

. (2.49)

In practice, we must evaluate the continued fraction to only a finite depth, but we must

evaluate to a depth sufficient to control the error. Suppose we wish to evaluate the infinite

continued fraction f0,0(s) given by (5.5) at some complex number s. Intuitively, we wish to

terminate the Lentz algorithm when the difference between successive convergents is small.

However, it is not immediately clear how the difference between convergents f
(k)
0,0 (s)−f (k−1)

0,0 (s)

is related to the absolute error f0,0(s) − f (k)
0,0 . Craviotto et al (1993) make this relationship

clear by furnishing an a posteriori truncation error bound for Jacobi fractions of the same

form as (5.5) in this paper. Assuming that f
(k)
0,0 (s) = Ak(s)/Bk(s) converges to f0,0(s) as

k →∞, Craviotto et al (1993) give the bound

∣∣∣f0,0(s)− f (k)
0,0 (s)

∣∣∣ ≤

∣∣∣ Bk(s)
Bk−1(s)

∣∣∣
∣∣∣Im

(
Bk(s)
Bk−1(s)

)∣∣∣

∣∣∣f (k)
0,0 (s)− f (k−1)

0,0 (s)
∣∣∣ , (2.50)

that is valid when Im(s) is nonzero. Note that Bk(s)/Bk−1(s) = 1/Dk(s), so (2.50) is easy

to evaluate during iteration under the Lentz algorithm. Therefore, we stop at depth k in the

Lentz algorithm when
|1/Dk(s)|

|Im (1/Dk(s))|
∣∣∣f (k)

0,0 (s)− f (k−1)
0,0 (s)

∣∣∣ (2.51)

is small.
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Figure 2.1: Comparison of transition probabilities P10,n(t = 1) computed by our error-con-

trolled method and that of Murphy and O’Donohoe (1975) for the immigration-death model

with λn = 0.2 and µn = 0.4n. The open circles are the values given by our method. The

solid line corresponds with the approximant method of Murphy and O’Donohoe with k = 2

(solid line), k = 3 (dashed line), and k = 4 (dotted line). In our experience, the approximant

method fails whenever n+m+ k is greater than approximately 20. It is interesting to note

that increasing the depth of truncation k in the approximant method actually worsens the

approximation.
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2.2.5 Numerical results

Although our error-controlled method is designed to be used when an analytic solution cannot

be found, we seek to validate our numerical results by comparison to available analytic and

numerical solutions. For the simple BDP with λn = nλ and µn = nµ, our numerical results

agree with the values from the well-known closed-form solution given explicitly in Bailey

(1964) as

Pm,n(t) =

min(m,n)∑

j=0

(
m

j

)(
m+ n− j − 1

m− 1

)
αm−jβn−j(1− α− β)j

Pm,0(t) = αm

(2.52)

where

α =
µ
(
e(λ−µ)t − 1

)

λe(λ−µ)t − µ and β =
λ
(
e(λ−µ)t − 1

)

λe(λ−µ)t − µ . (2.53)

Murphy and O’Donohoe (1975) give numerical probabilities for four general birth-death

models: a) immigration-death with λn = 0.2 and µn = 0.4n; b) immigration-emigration

with λn = 0.3, µ0 = 0, and µn = 0.1; c) queue with λn = 0.6, µ0 = 0, µ1 = µ2 = 0.2,

µ3 = µ4 = 0.4, and µn = 0.6 for n ≥ 5; and d) λn = 0.4, µn = 0.1
√
n. Our results agree

with those computed by Murphy and O’Donohoe for each of the four models given in Tables

2 through 7 in their paper (Murphy and O’Donohoe, 1975). We note that Murphy and

O’Donohoe did not report probabilities for m > 2 or n > 5 in any of their four models. In

our experience, their method performs poorly when n+m+k is greater than approximately

20.

As a demonstration of the instability of the approximant method, we contrast the numer-

ical results given by our error-controlled method with those obtained using the approximant

method, that we implemented as described in Murphy and O’Donohoe (1975), except for

some rescaling of intermediate quantities to avoid obvious sources of roundoff error. Figure

2.1 shows this comparison, using model (a) above, for three values of the truncation index k.

Note that increasing the truncation depth k in the approximant method does not improve

the error.
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2.3 Applications

Drawing on the robustness and generality of our error-controlled method, we conclude with

four models in ecology, genetics, and evolution whose analytic solutions remain elusive and

where past numerical approaches have fallen short. Using our approach, computation of

transition probabilities is straightforward, and the techniques outlined above may be used

without modification. Some of the examples are well-known models, and others are novel.

In some cases, the orthogonal polynomials satisfying (2.3) are known, and hence a solution

could be numerically computed using (2.2), provided there are good ways of evaluating the

polynomials. Often, a severe drawback of using known orthogonal polynomials to compute

a solution based on (2.2) is that the polynomials are model-specific. This makes experimen-

tation and model selection difficult, since computation of transition probabilities depends on

a priori analytic information about the polynomials and measure associated with the BDP.

Our method does not rely on a priori information about the process, other than the birth

and death rates for each state.

2.3.1 Immigration and emigration

Consider a population model for the number of organisms in an area, and suppose new

immigrants arrive at rate ν, and emigrants leave at rate γ. Organisms living in the area

reproduce with per-capita birth rate λ and die with rate µ. Define the linear rates

λn = nλ+ ν and µn = nµ+ γ. (2.54)

For the case γ = 0, an analytic expression for the orthogonal polynomials is known (Karlin

and McGregor, 1958a). For nonzero γ, orthogonal polynomials are available from which a

solution of the form (2.2) may be computed (Karlin and McGregor, 1958a; Ismail et al, 1988).

However, using our error-controlled method, we can easily find the transition probabilities

without additional analytic information. Figure 2.2 shows an example of the time-evolution

of P10,n(t) for various times t and states n, with the parameters λ = 0.5, ν = 0.2, µ = 0.3,

and γ = 0.1. The approximant method method of Murphy and O’Donohoe fails to produce
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Figure 2.2: Transition probabilities for the immigration/emigration model with λ = 0.5,

ν = 0.2, µ = 0.3, and γ = 0.1. The top panel shows P10,n(t) with t = 1 (solid line), t = 2

(dashed line), t = 3 (dotted line), and t = 4 (dash-dotted line) for n = 0, . . . , 50. The bottom

panel shows P10,n(t) with n = 15 (solid line), n = 20 (dashed line), n = 25 (dotted line), and

n = 30 (dash-dotted line) for t ∈ (0, 20).
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useful probabilities for n > 10 (not shown).

2.3.2 Logistic growth with Allee effects

Populations of organisms that occupy a finite space may be subject to various constraints on

their growth. The per-capita birth rate may decline when there are more organisms than the

ecosystem can sustain (Tan and Piantadosi, 1991). This can happen when there are too many

organisms competing for the same food supply. The decay of population size above some

carrying capacity is usually called logistic growth by ecologists. Another density-dependent

constraint is known as the Allee effect, in which per-capita birth rate increases superlinearly

with n once a small population has been established, due to favorable consequences of density,

such as cooperation and mutual protection from predators (Allee et al, 1949). As a realistic

example of a general BDP that has no obvious solution by orthogonal polynomials, we seek

a model that both transiently supports growth above the carrying capacity, and reflects

these two density-dependent constraints, similar in spirit to models described by Tan and

Piantadosi (1991) and Dennis (2002).

Qualitatively, if the per-capita birth rate with no density effects is λ, then the total birth

rate should rise faster than nλ when n is small, slower than nλ for intermediate n near the

carrying capacity, and should decay toward zero for n greater than the carrying capacity.

Tan and Piantadosi introduce a logistic birth rate λn = nλ
(
1− n

N

)
for a finite state space

model that takes values {0, 1, . . . , N}. However, to allow for temporary growth beyond

the carrying capacity, we choose λn ∝ λn2e−αn for intermediate and large n. To achieve

attenuated growth for small n as well, we scale this rate by a logistic function, yielding

λn =
λn2e−αn

1 + eβ(n−M)
and µn = nµ, (2.55)

where M is the population size with highest birth rate, and the death rate is assumed to be

proportional only to the number of existing individuals. Figure 2.3 shows the resulting rates

for various states n, with the different phases of population change shaded. To illustrate

that the model produces the desired behavior, several realizations of the process are given

in the lower panel for various starting values. The shaded regions correspond with the three
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Figure 2.3: Behavior of logistic/Allee model. The upper panel shows a plot of birth (solid

line) and death (dashed line) rates for states n = 0, . . . , 60, and parameters λ = 1, µ = 0.1,

M = 20, α = 0.2, and β = 0.3. The different phases of growth are labeled in the shaded

regions. The lower panel shows stochastic realizations of the logistic/Allee model for various

starting values. The shaded regions correspond with the shaded phases of growth in the

upper panel.
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Figure 2.4: Logistic/Allee model probabilities of extinction Pm,0(t) for initial population sizes

m = 1 (solid line), m = 5 (dashed line), m = 10 (dotted line), and m = 15 (dash-dotted

line). The full model parametrization is found in the text.

phases of growth. Note that most paths in the lower panel of Figure 2.3 center near n = 27,

where the birth rate and death rate are equal. The lower panel corresponds with Figure

1 in Dennis (2002). Figure 2.4 demonstrates the success of the error-controlled method

in computing time-dependent extinction probabilities Pm,0 for various starting values with

λ = 1, α = 0.2, β = 0.3, M = 20, and µ = 0.1.

2.3.3 Moran models with mutation and selection

The probability of fixation or extinction of an allele in finite populations is frequently of

interest to researchers in genetics. However, publications often rely on the probability of

eventual extinction Pm,0(t → ∞), or the probability of fixation of a novel mutation in

a population of constant size N , P1,N(t → ∞). While these asymptotic probabilities do

reveal important properties of the underlying models, the information they provide about

the distribution of time to fixation/extinction is incomplete. In practice, researchers may
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observe that m organisms in a sample exhibit a certain trait at a certain time. Then Pm,0(t),

the probability of extinction of that trait at finite times t in the future should presumably

be of great interest, since researchers cannot reliably observe the process for infinitely long

times. Additionally, the finite-time probability of fixation/extinction may exhibit threshold

effects or unexpected dynamics that are not revealed by the asymptotic probability of such

an event.

Moran (1958) introduces a model for the time-evolution of a biallelic locus when the

population size is constant through time. A biallelic locus is a location in an organism’s

genome in which two different genetic variants or alleles exist in a population. We are

interested in how the number of individuals carrying each allele changes from generation

to generation. Krone and Neuhauser (1997) exploit the Moran model to derive a BDP

counting the number of individuals with a certain allele in the context of ancestral genealogy

reconstruction in which one allele offers a selective advantage to individuals that carry it.

Selection greatly complicates the problem and remains an active area of research. In a

limiting case, this process corresponds to Kingman’s coalescent process when there is no

mutation or selection (Kingman, 1982a,b).

To construct the Moran process with mutation and selection, suppose a finite population

of N haploid organisms has 2 alleles at a certain locus: A1 and A2. Individuals that carry A1

reproduce at rate α and A2 individuals reproduce at rate β. Suppose further that individuals

carrying the A1 allele have a selective advantage over individuals carrying A2, so α > β.

When an individual dies, it is replaced by the offspring of a random parent chosen from all

N individuals, including the one that dies. This parent contributes a gamete carrying its

allele that is also subject to mutation. Mutation from A1 to A2 happens with probability u

and in reverse with rate v. The new offspring receives the possibly mutated haplotype and

the process continues.

Let X(t) be a BDP counting the number of A1 individuals on the state space n ∈
{0, . . . , N}. To construct the transition rates of the process, suppose there are currently n

individuals of type A1. We first consider the addition of a new individual of type A1, so

that n → n + 1. For this to happen, the individual that dies must be of type A2. If the
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parent of the replacement is one of the n of type A1, the parent contributes its allele without

mutation, and this happens with probability 1−u. If the parent of the replacement is one of

the N − n of type A2, the parent contributes its allele, which then mutates with probability

v. Therefore, the total rate of addition is

λn =
N − n
N

[
α
n

N
(1− u) + β

N − n
N

v

]
, (2.56)

for n = 0, . . . , N with λn = 0 when n > N . Likewise, the removal of an individual of type

A1 can happen when one of the n individuals of type A1 is chosen for replacement. If the

parent of the replacement is one of the N −n of type A2, the parent contributes A2 without

mutation, with probability 1 − v. If the parent is one of the n of type A1, the allele must

mutate to A2 with probability u. The total rate of removals becomes

µn =
n

N

[
β
N − n
N

(1− v) + α
n

N
u

]
, (2.57)

for n = 1, . . . , N with µ0 = λN = 0 and µn = 0 when n > N . Note that if v > 0, then λ0 > 0

so the A1 allele cannot go extinct. Also, if u > 0, then µN > 0, so the A1 allele cannot be

fixed in the population.

Karlin and McGregor (1962) derive the relevant polynomials and measure for the Moran

process described above, but without selection, so that α = β. Donnelly (1984) gives expres-

sions for the transition probabilities in the case where α = β = 1, noting that when selection

is introduced (via differing α and β), his approach is no longer fruitful. Using our technique,

computation of the transition probabilities under selection is straightforward. The upper

panel of Figure 2.5 shows the probability of fixation by time t. The lower panel shows the

finite-time fixation probability of A1, Pm,100(t), with u = 0 so the state n = 100 is absorbing.

Since the state space in the Moran model is finite, it is natural to consider the matrix

exponentiation method discussed in the Introduction. We write the stochastic transition
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Figure 2.5: Transition probabilities for the Moran model with selection. The upper panel

shows the probability of n individuals having allele A1 at time t, P50,n(t) for the Moran

model with N = 100, starting from m = 50 with u = 0.02, v = 0.01, α = 60, and β = 10.

We show the probabilities for t = 1 (solid line), t = 3 (dashed line), t = 5 (dotted line),

t = 8 (dash-dotted line). Note that although the states 0 and 100 are not absorbing, the

mutation rates u and v are small enough that probability accumulates significantly in these

end states. Note also the asymmetry in the distribution at longer times. The lower panel

reports the probability of fixation by time t, Pm,100(t), for the same model, but with u = 0 so

the state n = 100 is absorbing. The probabilities shown are for m = 70 (solid line), m = 50

(dashed line), m = 20 (dotted line), and m = 1 (dash-dotted line). Note the starkly different

time-dynamics for different starting values.
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matrix as

Q =




−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . . . . . . . .

µN −(λN + µN) λN




(2.58)

where λn and µn are defined by (2.56) and (2.57), respectively. In our experience, the matrix

exponentiation method often works well, and its computational cost is similar to that of our

error-controlled method. However, it is highly sensitive to rate matrix conditioning. For

example, Figure 2.6 shows a comparison of transition probabilities from the error-controlled

method and the matrix exponentiation method for the Moran model with N = 100, α = 210,

β = 20, u = 0.002, and v = 0. In evolutionary terms, this means that mutation from A1 to

A2 is impossible, and the A2 haplotype suffers from low fitness. Computationally, this has

the effect of making µn small for most n, and hence the rate matrix grows ill-conditioned.

Although the rate matrix in this example is nearly defective, this choice of parameter

values is not unreasonably extreme. For example, researchers in population genetics often

wish to test the hypothesis that selection occurs in a dataset. They fit parameters for models

with selection (full model) and without selection (restricted model) and perform a likelihood

ratio test of this hypothesis. If the estimates of β and u in the full model are small, they may

be unable to reliably compute the probability (likelihood) of the data, given the estimated

parameter values under the full model.

2.3.4 A frameshift-aware indel model

Thorne et al (1991) introduce a BDP modeling insertion and deletion of nucleotides in DNA

for applications in molecular evolution. The authors model the process of sequence length

evolution by assuming that a new nucleotide can be inserted adjacent to every existing

nucleotide, and every existing nucleotide is subject to deletion, at a constant per-nucleotide

rate. This corresponds to the simple BDP with λn = nλ and µn = nµ. If a sequence has
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Figure 2.6: Comparison of Moran model transition probabilities P50,n(t = 0.2) computed by

two methods with N = 100, α = 210, β = 20, u = 0.002, and v = 0. The open circles

correspond with our error-controlled method, and the solid line corresponds with the matrix

exponentiation method. This choice of parameters causes wild fluctuations in probabilities

reported by the matrix exponentiation method since the stochastic rate matrix becomes

nearly singular.
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m nucleotides at time 0 and there are n nucleotides at time t later, the probability of this

event is Pm,n(t).

However, an important aspect of biological sequence evolution is conservation of the

structure and biophysical properties of proteins that result from transcription and translation

of DNA sequences. After coding DNA is transcribed into RNA, ribosomes translate 3-

nucleotide chunks (codons) of the RNA into a single amino acid residue, that is then joined

to the end of a growing protein polymer. Insertions or deletions (indels) in a DNA sequence

that result in a shift in this triplet code are called “frame-shift” mutations. It is likely that

a frame-shift indel occurring in a protein-coding DNA sequence results in a protein that

is prematurely terminated or possesses structural and chemical characteristics unlike the

ancestral protein. Insertions or deletions whose length is a multiple of three should be more

common. We seek to model this behavior in a novel way: suppose the indel process is a

BDP similar in spirit to the one presented by Thorne et al (1991), and the rate of insertion

and deletion of nucleotides depends on the number of nucleotides already inserted, modulo

(mod) 3:

λn =





nβ0 if n− 1 = 0 mod 3

nβ1 if n− 1 = 1 mod 3

nβ2 if n− 1 = 2 mod 3

and µn =





nγ0 if n− 1 = 0 mod 3

nγ1 if n− 1 = 1 mod 3

nγ2 if n− 1 = 2 mod 3

. (2.59)

Here we assume that β2 > β0, β1, and γ1 > γ0, γ2 so that transitions to state n such that n−
1 = 0 mod 3 occur at a faster rate per nucleotide. The linear-periodic nature of these birth

and death rates make solution of the orthogonal polynomials and measure corresponding with

this BDP difficult. The approximant method of Murphy and O’Donohoe also fails here for

large n. However, using our error-controlled method, numerical results are readily available.

Figure 2.7 shows P1,n(t) for n = 0, . . . , 50 at various times t. Note that the distribution

of the number of inserted bases has peaks at the integers mod three. Finally, it is worth

noting that the dearth of tractable BDPs for indel events has been a major deterrent in

statistical sequence alignment and we are actively exploring solutions to this problem using

our error-controlled method.
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Figure 2.7: Frameshift-aware indel model probability of observing n inserted DNA bases,

given starting at m = 1. The transition probability P1,n(t) is shown for t = 5 (solid line),

t = 7 (dashed line), t = 9 (dotted line), and t = 11 (dash-dotted line), with parameters

β0 = 0.3, β1 = 1, β2 = 4, γ0 = 2, γ1 = 0.2, and γ2 = 0.2.
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2.4 Conclusion

Traditionally the simple BDP with linear rates has dominated modeling applications, since its

transition probabilities and other quantities of interest find analytic expressions. However,

increasingly sophisticated models in ecology, genetics, and evolution, among other fields,

may necessitate more advanced computational methods to handle processes whose birth and

death rates do not easily yield analytic solutions. We have demonstrated a flexible method

for finding transition probabilities of general BDPs that works for arbitrary sets of birth and

death rates {λn} and {µn}, and does not require additional analytic information. This should

prove useful for rapid development and testing of new models in applications. For simple

models whose solution is available, we find that our method agrees with known solutions and

remains robust for large starting and ending states and long times t. It is our hope that the

method presented here will assist researchers in understanding the properties of increasingly

rich and realistic models.

2.5 Appendix

2.5.1 Approximant method

Murphy and O’Donohoe (1975) approximate the inverse Laplace transform of (2.15) by first

truncating the continued fraction as a rational approximant through a partial fractions sum.

To illustrate the pitfalls of this approach, we derive the inversion expressions presented by

Murphy and O’Donohoe and analyze their properties. We provide an example to show that

this technique can become numerically unstable. We first seek to uncover the truncation error

in the time domain of the transition probabilities. If we truncate the continued fractions

(2.15) at depth k, we have

f (k)
m,n(s) =

(
m∏

j=n+1

µj

)
Bn

Bm+1+

Bmam+2

bm+2+

am+3

bm+3+
· · · am+k

bm+k

for n ≤ m, and

f (k)
m,n(s) =

(
n−1∏

j=m

λj

)
Bm

Bn+1+

Bnan+2

bn+2+

an+3

bn+3+
· · · an+k

bn+k

for n ≥ m.

(2.60)
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For concreteness, suppose in what follows that n ≥ m. Note that the denominator of the

second equation is simply Bn+k. Let A
(n)
k be the numerator of the continued fraction in the

second equation in (2.60), so

f (k)
m,n =

(
n−1∏

j=m

λj

)
A

(n)
k

Bn+k

, (2.61)

where A
(n)
k satisfies A

(0)
k = Ak, A

(n)
1 =

∏n+1
j=1 aj, and

A
(n)
k = an+kA

(n)
k−2 + bn+kA

(n)
k−1. (2.62)

Note also that the difference between truncated estimates in the Laplace domain (s) is

An+k

Bn+k

− An
Bn

=
An+kBn − AnBn+k

Bn+kBn

=
(−1)nA

(n)
k

Bn+kBn

.

(2.63)

This yields the generalized determinant formula

An+kBn − AnBn+k = (−1)nA
(n)
k , (2.64)

and at a root si of Bn+k(s), we have

A
(n)
k (si) = (−1)nAn+k(si)Bn(si). (2.65)

Now if s1, s2, . . . , sn are the roots of Bn(s), we have, using the previous line and a partial

fractions decomposition of (2.60), the formula for the Laplace transform of the transition

probability Pm,n(t), truncated at k,

f (k)
m,n(s) =

(
n−1∏

j=m

λj

)
Bm(s)A

(n)
k (s)

Bn+k(s)

=

(
n−1∏

j=m

λj

)
Bm(s)A

(n)
k (s)∏n+k

i=1 (s− si)

=

(
n−1∏

j=m

λj

)
n+k∑

i=1

Bm(s)Bn(si)An+k(si)∏
j 6=i(sj − si)

(
1

s− si

)
,

(2.66)

since we only require the values of An+k(s) and Bn(s) at the zeros of Bn+k(s). Then inverse

transforming, an approximate formula for the transition probability Pm,n(t) is

P (k)
m,n(t) ≈

(
n−1∏

j=m

λj

)
n+k∑

i=1

Bm(si)Bn(si)An+k(si)∏
j 6=i(sj − si)

e−sit. (2.67)
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The roots of Bn(s), used in (2.66) and (2.67), are often found numerically as follows. Consider

the characteristic polynomial det
(
B̃n + sI

)
of the matrix

B̃n =




λ0 1

λ0µ1 λ1 + µ1 1

λ1µ2 λ2 + µ2 1

. . . . . . . . .

λn−3µn−2 λn−2 + µn−2 1

λn−2µn−1 λn−1 + µn−1




. (2.68)

It is clear that the nth partial denominator Bn(s) = det(B̃n + sI), and this quantity is zero

when −s is an eigenvalue of the matrix B̃n. Therefore, the negatives of the eigenvalues of B̃n

are the roots of Bn(s). Furthermore, B̃n can be transformed into a real symmetric matrix

via a similarity transform and hence Bn(s) has precisely n roots, all of which are simple,

real, and negative. One usually finds these eigenvalues via the QR algorithm or similar

numerical techniques (Press, 2007). However, the iterative eigendecomposition of (2.68)

generates small errors in the eigenvalues for large n + k. These errors are amplified in the

product in the denominator of each summand in (2.67), resulting in a sum with both positive

and negative terms that may be very large. Klar et al (2010) encounter similar instability in

this algorithm. Their solution is to find the roots of the terms in the numerator and compute

each summand as a product of individual numerators and denominators in an attempt to

keep roundoff error in the product from accumulating. So, if z1, . . . , zn+k are the roots of

An+k then (2.67) becomes

P (k)
m,n(t) ≈

(
n−1∏

j=m

λj

)
n+k∑

i=1

Bm(si)Bn(si)(zi − si)
∏

j 6=i

(
zj − si
sj − si

)
e−sit. (2.69)

This procedure does improve the numerical stability of the computation, but requires two

eigendecompositions of possibly large matrices for every evaluation of Pm,n(t), increasing the

computational cost and, for large m and n, the roundoff error. In our opinion, it is more

advantageous to avoid truncation of the continued fraction (5.5) at a pre-specified index, and

instead evaluate the continued fraction until convergence during numerical inversion. Figure

2.1 shows how approximant methods fail for large n.
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2.5.2 A power series method

Parthasarathy and Sudhesh (2006a) present exact solutions by transforming continued frac-

tions such as (5.5) into an equivalent power series. Wall (1948) shows that Jacobi fractions

of this type can always be represented by an equivalent power series. However, the small

radius of convergence of power series expressions for transition probabilities can limit their

usefulness for long times or large birth or death rates. Parthasarathy and Sudhesh show that

P0,n(t) has a power series representation given by

Pm,n(t) =

(
n−1∏

k=0

a2k

)
∞∑

m=0

(−1)mA(m, 2n)
tm+n

(m+ n)!
, (2.70)

where

A(m,n) =
n∑

i1=0

ai1

i1+1∑

i2=0

ai2

i2+1∑

i3=0

ai3 · · ·
im−1+1∑

im=0

aim , (2.71)

with A(0, n) = 1 (Parthasarathy and Sudhesh, 2006a,b). Here, a2n = λn and a2n+1 = µn

in the notation used in their papers. This approach is unique because it yields an exact

analytic expression for the transition probabilities of a general BDP. However, the radius of

convergence of the power series depends on the specified rates, and this radius may be quite

small. To illustrate the pitfalls of this approach, consider an = (n + 1)λ, corresponding to

the BDP with λn = (2n+ 1)λ and µn = 2nλ (Parthasarathy and Sudhesh, 2006a, Example

4.6). The power series for the transition probability in this process becomes

P0,n(t) =
∞∑

m=0

(−1)m
(2n+ 2m)!

m!n!

(λt/2)n+m

(n+m)!
. (2.72)

Then the radius of convergence R of the power series is given by

1/R = lim
m→∞

∣∣∣∣∣
(2n+ 2m+ 2)!

(
λ
2

)n+m+1

(m+ 1)!n!(n+m+ 1)!
× m!n!(n+m)!

(2n+ 2m)!
(
λ
2

)n+m

∣∣∣∣∣

= lim
m→∞

(2m+ 2n+ 1)(2n+ 2m+ 2)

(m+ 1)(n+m+ 1)

(
λ

2

)

= lim
m→∞

2m+ 2n+ 1

m+ 1
λ

= 2λ.

(2.73)

And so the series diverges when 2λt > 1. To illustrate the limitations of the power series

approach, note that in this process, the transition intensity from 0 to 1 is λ, so the expected
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first-passage time from 0 to 1 is E(T0,1) = 1/λ. Therefore, we cannot evaluate (2.72) when t

is greater than E(T0,1)/2. If n is much greater than 1, we may be unable to reliably evaluate

P0,n(t) for times near E(T0,n).
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CHAPTER 3

Estimation for general birth-death processes

Birth-death processes (BDPs) are continuous-time Markov chains that track the number of

“particles” in a system over time. While widely used in population biology, genetics and ecol-

ogy, statistical inference of the instantaneous particle birth and death rates remains largely

limited to restrictive linear BDPs in which per-particle birth and death rates are constant.

Researchers often observe the number of particles at discrete times, necessitating data aug-

mentation procedures such as expectation-maximization (EM) to find maximum likelihood

estimates. The E-step in the EM algorithm is available in closed-form for some linear BDPs,

but otherwise previous work has resorted to approximation or simulation. Remarkably, the

E-step conditional expectations can also be expressed as convolutions of computable tran-

sition probabilities for any general BDP with arbitrary rates. This important observation,

along with a convenient continued fraction representation of the Laplace transforms of the

transition probabilities, allows novel and efficient computation of the conditional expecta-

tions for all BDPs, eliminating the need for approximation or costly simulation. We use this

insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs

characterized by various rate models, including generalized linear models. We show that our

Laplace convolution technique outperforms competing methods when available and demon-

strate a technique to accelerate EM algorithm convergence. Finally, we validate our approach

using synthetic data and then apply our methods to estimation of mutation parameters in

microsatellite evolution.
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3.1 Introduction

A birth-death process (BDP) is a continuous-time Markov chain that models a non-negative

integer number of particles in a system (Feller, 1971). The state of the system at a given time

is the number of particles in existence. At any moment in time, one of the particles may “give

birth” to a new particle, increasing the count by one, or one particle may “die”, decreasing the

count by one. BDPs are popular modeling tools in a wide variety of quantitative disciplines,

such as population biology, genetics, and ecology (Thorne et al, 1991; Krone and Neuhauser,

1997; Novozhilov et al, 2006). For example, BDPs can characterize epidemic dynamics,

(Bailey, 1964; Andersson and Britton, 2000), speciation and extinction (Nee et al, 1994;

Nee, 2006), evolution of gene families (Cotton and Page, 2005; Demuth et al, 2006), and the

insertion and deletion events for probabilistic alignment of DNA sequences (Thorne et al,

1991; Holmes and Bruno, 2001).

Traditionally, most modeling applications have used the “simple linear” BDP with con-

stant per-particle birth and death rates, which arises from an assumption of independence

among particles and no background birth and death rates. When individual birth and death

rates instead depend on the size of the population as a whole, the model is called a “general”

BDP. Previous statistical estimation in BDPs has focused mainly on estimating the constant

per-particle birth and death rates of the simple linear BDP based on observations of the

number of particles over time. However, the simple linear BDP is often unrealistic, and

nonlinear dependence of the birth and death rates on the current number of particles pro-

vides the means to model more sophisticated and realistic patterns of stochastic population

dynamics in a wide variety of biological disciplines. For example, populations sometimes

exhibit logistic-like growth as their number approaches the carrying capacity of their envi-

ronment (Tan and Piantadosi, 1991). In genetic models, the rate of new offspring carrying

an allele often depends on the proportions of both individuals already carrying the allele and

those who do not (Moran, 1958). In coalescent theory, the rate of coalescence changes with

the square of the number of lineages (Kingman, 1982b). In addition, researchers may wish

to assess the influence of covariates on birth and death rates by fitting a regression model
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(Kalbfleisch and Lawless, 1985; Liu et al, 2007).

Progress in estimating birth and death rates in BDPs has also typically been limited to

continuous observation of the process (Moran, 1951, 1953; Anscombe, 1953; Darwin, 1956;

Wolff, 1965; Reynolds, 1973; Keiding, 1975). However, in practice researchers may observe

data from BDPs only at discrete times through longitudinal observations. Estimating tran-

sition rates in continuous-time Markov processes using discrete observations is difficult since

the state path between observations is not observed. Furthermore, direct analytic maxi-

mization of the likelihood for general BDPs remains infeasible for partially observed samples

since the likelihood usually cannot be written in closed-form. Despite these challenges, sev-

eral researchers have made progress in estimating parameters of the simple linear BDP under

discrete observation (Keiding, 1974; Thorne et al, 1991; Holmes and Bruno, 2001; Rosenberg

et al, 2003; Dauxois, 2004). However, none of these developments provides a robust method

to find exact maximum likelihood estimates (MLEs) of parameters in discretely observed

general BDPs with arbitrary birth and death rates.

A major insight comes from the fact that the likelihood of the continuously observed

process has a simple form which easily yields expressions for estimation of rate parameters.

This fact is the basis for expectation-maximization (EM) algorithms for maximum likelihood

estimation in missing data problems (Dempster et al, 1977). In finite state-space Markov

chains, the relevant conditional expectations (the E-step of the EM algorithm) can often

be computed efficiently, and several researchers have derived EM algorithms for estimat-

ing transition rates in this context (Lange, 1995a; Holmes and Rubin, 2002; Hobolth and

Jensen, 2005; Bladt and Sorensen, 2005; Metzner et al, 2007). Unfortunately, finding these

conditional expectations for general BDPs poses challenges since the joint distribution of the

states and waiting times (or its generating function) is usually not available in closed-form.

Notably, Holmes and Bruno (2001); Holmes and Rubin (2002) and Doss et al (2010) are

able to find analytic expressions or numerical approximations for these expectations in EM

algorithms for certain BDPs whose rates depend linearly on the current number of parti-

cles. While these developments are promising, there remains a great need for estimation

techniques that can be applied to more sophisticated BDPs under a variety of sampling sce-
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narios. Indeed, more complex and realistic models like those reviewed by Novozhilov et al

(2006) may be of little use to applied researchers if no practical method exists to estimate

their parameters.

Here we seek to fill this apparent void by providing a framework for deriving EM algo-

rithms for estimating rate parameters of a general BDP. We first formally define the general

BDP and give an exact expression for the Laplace transform of the transition probabilities

in the form of a continued fraction. We then give the likelihood for continuously-observed

BDPs and outline the EM algorithm. Next, we describe a novel method to efficiently com-

pute the expectations of the E-step for BDPs with arbitrary rates. Since these expectations

are convolutions of transition probabilities, we perform the convolution in the Laplace do-

main, and then invert the Laplace transformed expressions to obtain the desired conditional

expectation. This technique obviates the costly numerical integration or repeated simulation

that has plagued previous approaches. We provide examples of the maximization step for

several different classes of BDPs and demonstrate a technique for accelerating convergence

of the EM algorithm. We show that our method is faster than competing techniques and

validate it using simulated data. Finally, we conclude with an application that analyzes

microsatellite evolution and answers an open question in evolutionary genomics.

3.2 General BDPs and their EM algorithms

3.2.1 Formal description and transition probabilities

Consider a general BDP X(τ) counting the number of particles k in existence at times

τ ≥ 0. From state X(τ) = k, transitions to state k + 1 happen with instantaneous rate λk,

and transitions to state k−1 happen with instantaneous rate µk. The transition rates λk and

µk may depend on k but are time-homogeneous. As we show below, it is often necessary to

evaluate finite-time transition probabilities to derive efficient EM algorithms for estimation

of arbitrary birth and death rates in general BDPs. This proves useful both in completing

the E-step of the EM algorithm and in computing incomplete data likelihoods for validation
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of our EM estimates. For a starting state i ≥ 0, the finite-time transition probabilities

Pi,j(τ) = Pr(X(τ) = j | X(0) = i) obey the system of ordinary differential equations

dPi,0(τ)

dτ
= µ1Pi,1(τ)− λ0Pi,0(τ), and

dPi,j(τ)

dτ
= λj−1Pi,j−1(τ) + µj+1Pi,j+1(τ)− (λj + µj)Pi,j(τ),

(3.1)

for j ≥ 1 with Pi,i(0) = 1 and Pi,j(0) = 0 for i 6= j (Feller, 1971).

For some simple parameterizations of λk and µk, closed-form solutions exist for the tran-

sition probabilities Pi,j(τ), but this is not possible for most models. Karlin and McGregor

(1957b) show that for any parameterization of λk and µk, it is possible to express the tran-

sition probabilities in terms of orthogonal polynomials. However, in practice these special

polynomials are difficult to find, and even when they are available, they rarely yield so-

lutions in closed-form or expressions that are amenable to computation (Novozhilov et al,

2006; Renshaw, 2011). In contrast, the continued fraction method we outline below does not

require additional model-specific insight beyond specification of λk and µk.

To solve for the transition probabilities, it is advantageous to work in the Laplace domain

(Karlin and McGregor, 1957b). This transformation also proves essential in maintaining nu-

merical stability of transition probabilities in general BDPs and in computing the conditional

expectations necessary for the EM algorithm derived in a subsequent section. Laplace trans-

forming equation (5.2) yields

sfi,0(s)− δi0 = µ1fi,1(s)− λ0fi,0(s),

sfi,j(s)− δij = λj−1fi,j−1(s) + µj+1fi,j+1(s)− (λj + µj)fi,j(s),
(3.2)

where fi,j(s) is the Laplace transform of Pi,j(τ) and δij = 1 if i = j and zero otherwise.

Letting i = 0 and rearranging (3.2), we obtain the recurrence relations

f0,0(s) =
1

s+ λ0 − µ1

(
f0,1(s)

f0,0(s)

) , and

f0,j(s)

f0,j−1(s)
=

λj−1

s+ µj + λj − µj+1

(
f0,j+1(s)

f0,j(s)

) .
(3.3)

We can inductively combine these expressions for j = 1, 2, 3, . . . to arrive at the well-known

64



generalized continued fraction

f0,0(s) =
1

s+ λ0 −
λ0µ1

s+ λ1 + µ1 −
λ1µ2

s+ λ2 + µ2 − · · ·
.

(3.4)

This is an exact expression for the Laplace transform of the transition probability P0,0(τ).

In (5.5), let a1 = 1 and aj = −λj−2µj−1, and let b1 = s + λ0 and bj = s + λj−1 + µj−1 for

j ≥ 2. Then (5.5) becomes

f0,0(s) =
a1

b1 +
a2

b2 +
a3

b3 + · · ·
.

(3.5)

We can write this more compactly as

f0,0(s) =
a1

b1+

a2

b2+

a3

b3+
· · · . (3.6)

The kth convergent of f0,0(s) is

f
(k)
0,0 (s) =

a1

b1+

a2

b2+
· · · ak

bk
=
Ak(s)

Bk(s)
, (3.7)

where Ak(s) and Bk(s) are the numerator and denominator of the rational function f
(k)
0,0 .

The transition probabilities Pi,j(τ) for i, j > 0 can be derived in continued fraction form by

combining (3.2) and (5.5) to obtain

fi,j(s) =





(
i∏

k=j+1

µk

)
Bj(s)

Bi+1(s)+

Bi(s)ai+2

bi+2+

ai+3

bi+3+
· · · for j ≤ i,

(
j−1∏

k=i

λk

)
Bi(s)

Bj+1(s)+

Bj(s)aj+2

bj+2+

aj+3

bj+3+
· · · for i ≤ j,

(3.8)

(Murphy and O’Donohoe, 1975; Crawford and Suchard, 2011).

Although the Laplace transforms of the transition probabilities are generally still not

available in closed-form, a continued fraction representation is desirable for several reasons:
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1) continued fraction representations of functions often converge much faster than equivalent

power series; 2) there are efficient algorithms for evaluating them to a finite depth; and 3)

there exist methods for bounding the error of truncated continued fractions (Bankier and

Leighton, 1942; Wall, 1948; Blanch, 1964; Lorentzen and Waadeland, 1992; Craviotto et al,

1993; Abate and Whitt, 1999; Cuyt et al, 2008). For an arbitrary BDP, we recover the

transition probabilities through numerical inversion of the Laplace-transformed expressions.

We evaluate the continued fraction to a monitored depth that controls the overall error

and generates stable approximations to the transition probabilities unattainable by previous

methods (Murphy and O’Donohoe, 1975; Parthasarathy and Sudhesh, 2006a; Crawford and

Suchard, 2011).

The ability to compute transition probabilities for general BDPs with arbitrary rate

parameterizations proves useful in two ways. First, if we interpret finite-time transition

probabilities as functions of an unknown parameter vector θ, then Pa,b(t) given θ returns

the likelihood of a discrete observation from a BDP such that X(0) = a and X(t) = b, where

the trajectory in time t between a and b is unobserved. Second, transition probabilities play

an important role in computing conditional expectations of sufficient statistics, as we shall

see below.

3.2.2 Likelihood expressions and surrogate functions

With a formal description of a general BDP and the finite-time transition probabilities in

hand, we now proceed with our task of estimating the parameters of a general BDP using

discrete observations. Given one or more independent observations of the form Y = (X(0) =

a,X(t) = b) from a general BDP, we wish to find maximum likelihood estimates of the rate

parameters λk and µk for k = 0, 1, 2, . . .. We will assume that the birth and death rates at

state k depend on both k and a finite-dimensional parameter vector θ, so that the form of

λk(θ) and µk(θ) is known for all k.

For a single realization of the process starting at X(0) = a and ending at X(t) = b, let

Tk be the total time spent in state k. Let Uk be the number of “up” steps (births) from
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Figure 3.1: A sample path from a birth-death process (BDP) X(τ). The process starts at

state X(0) = 1 and is at state X(t) = 4 at time t. At right are schematic representations of

the time spent in each state Tk, the number of up steps Uk, and the number of down steps

Dk. These quantities are the sufficient statistics for estimators of rate parameters in general

birth-death processes.

state k, and let Dk be the number of “down” steps (deaths) from state k. Let the total

number of up and down steps in a realization of the process be denoted by U =
∑∞

k=0 Uk

and D =
∑∞

k=0 Dk respectively. We also define the total particle time,

Tparticle =

∫ t

0

X(τ) dτ =
∞∑

k=0

kTk, (3.9)

that counts the amount of time lived by each particle since time τ = 0. Of course, the total

elapsed time is t =
∑∞

k=0 Tk. We demonstrate these concepts schematically in Figure 3.1.

The log-likelihood for a continuously observed process takes a simple form when we sum

over all possible states k (Wolff, 1965):

`(θ) =
∞∑

k=0

Uk log
[
λk(θ)

]
+Dk log

[
µk(θ)

]
−
[
λk(θ) + µk(θ)

]
Tk. (3.10)

However, when a BDP is sampled discretely such that only X(0) = a and X(t) = b are

observed, the quantities Uk, Dk, and Tk are unknown for every state k, and we cannot

maximize the log-likelihood (3.10) without them.
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We therefore appeal to the EM algorithm for iterative maximum likelihood estimation

with missing data (Dempster et al, 1977). In the EM algorithm, we define a surrogate

objective function Q by taking the expectation of the complete data log-likelihood (3.10),

conditional on the observed data Y and the parameter values θ(m) from the previous iteration

of the EM algorithm (the E-step). Then we find the parameter values θ(m+1) that maximize

this surrogate function (the M-step). This two-step process is repeated until convergence to

the maximum likelihood estimate of θ. Taking the expectation of (3.10) conditional on Y

and θ(m), we form the surrogate function Q:

Q
(
θ | θ(m)

)
= E

[
`(θ) | Y,θ(m)

]

=
∞∑

k=0

E(Uk|Y) log
[
λk(θ)

]
+ E(Dk|Y) log

[
µk(θ)

]
− E(Tk|Y)

[
λk(θ) + µk(θ)

]
,

(3.11)

where for clarity we have omitted the dependence of the expectations on the parameter value

θ(m) from the mth iterate. In general, we assume that the maximum likelihood estimator

exists; see Bladt and Sorensen (2005) for a discussion of the issues of identifiability, existence,

and uniqueness.

3.2.3 Computing the expectations of the E-step

Computing the expectations of Uk, Dk, and Tk in the E-step is difficult in birth-death

estimation since the unobserved state path and waiting times are not independent conditional

on the observed data Y. Doss et al (2010) adopt an approach for linear BDPs that combines

analytic results with simulations. For some models, these authors are able to derive the

generating function for the joint distribution of U , D, Tparticle, and the state path conditional

on X(0) = a and can manipulate this generating function to complete the E-step. For a

more complicated linear model, Doss et al resort to approximating the relevant conditional

expectations by simulating sample paths, conditional on Y (Hobolth, 2008).

Our solution is to recognize that we do not need to know very much about the missing

data to find the conditional expectations used in the sufficient statistics above. In fact, the

transition probabilities are all that we require. The following integral representations of the
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conditional expectations in the EM algorithm will prove useful:

E(Uk|Y) =

∫ t

0

Pa,k(τ)λkPk+1,b(t− τ) dτ

Pa,b(t)
, (3.12a)

E(Dk|Y) =

∫ t

0

Pa,k(τ)µkPk−1,b(t− τ) dτ

Pa,b(t)
, and (3.12b)

E(Tk|Y) =

∫ t

0

Pa,k(τ)Pk,b(t− τ) dτ

Pa,b(t)
. (3.12c)

These formulas have appeared in many types of studies related to EM estimation for continuous-

time Markov chains (Lange, 1995a; Holmes and Rubin, 2002; Bladt and Sorensen, 2005;

Hobolth and Jensen, 2005; Metzner et al, 2007). For general BDPs whose transition proba-

bilities must be computed numerically, numerical integration over the product of the densities

can be computationally prohibitive.

However, the numerators in (3.12) a-c are convolutions of integrable time-domain func-

tions. Since the Laplace transforms fa,b(s) of these transition probabilities are available and

easy to compute, we take advantage of the Laplace convolution property, arriving at the

representations

E(Uk|Y) = λk
L−1

[
fa,k(s) fk+1,b(s)

]
(t)

Pa,b(t)
, (3.13a)

E(Dk|Y) = µk
L−1

[
fa,k(s) fk−1,b(s)

]
(t)

Pa,b(t)
, and (3.13b)

E(Tk|Y) =
L−1

[
fa,k(s) fk,b(s)

]
(t)

Pa,b(t)
. (3.13c)

where L−1 denotes inverse Laplace transformation. Although these formulas are equivalent

to (3.12), they offer substantial time savings over computing the integral directly, and render

tractable the computation of expectations in the EM algorithm for arbitrary general BDPs.

To calculate the numerators of (3.13), we use the Laplace inversion method popularized

by Abate and Whitt (1992b, 1995). This involves a Riemann sum approximation of the

inverse transform that stabilizes the discretization error and is amenable to series acceleration
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methods (Abate and Whitt, 1999; Press, 2007). To evaluate the continued fraction Laplace

transforms fa,b(s), we use the modified Lentz method (Lentz, 1976; Thompson and Barnett,

1986; Press, 2007).

3.2.4 Maximization techniques for various BDPs

In contrast to the generic technique outlined above for computing the expectations of the

E-step, the M-step depends explicitly on the functional form of the birth and death rates

λk(θ) and µk(θ). Here we give several representative examples of BDPs and techniques

for completing the M-step of the EM algorithm, such as analytic maximization, minorize-

maximize (MM), and Newton’s method.

3.2.4.1 Simple linear BDP

In the simple linear BDP, births and deaths happen at constant per-capita rates, so λk = kλ

and µk = kµ. The unknown parameter vector is θ = (λ, µ), and the surrogate function

becomes

Q(θ) =
∞∑

k=0

E(Uk|Y) log[kλ] + E(Dk|Y) log[kµ]− E(Tk|Y)k(λ+ µ). (3.14)

Taking the derivative of (3.14) with respect to the unknown parameters, setting the result

to zero, and solving for λ and µ gives the M-step updates

λ(m+1) =
E(U |Y)

E(Tparticle|Y)
, and (3.15a)

µ(m+1) =
E(D|Y)

E(Tparticle|Y)
. (3.15b)

These updates correspond to the usual maximum likelihood estimators in the continuously

observed process (Reynolds, 1973). Note that the transition probabilities Pa,b(t) in the

denominators of the expectations in (3.12) cancel out in (3.15a) and (3.15b). When this is

the case, transition probabilities are not necessary to derive an EM algorithm.
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3.2.4.2 Linear BDP with immigration

Sometimes populations are not closed, and new individuals can enter; we call this action “im-

migration.” Another interpretation arises in models of point mutations in DNA sequences.

Suppose new mutations arise in a DNA sequence via two distinct processes: one inserts new

mutants at a rate proportional to the number already present, and the other creates new

mutations at a constant rate, regardless of how many already exist. To model this behavior,

we augment the simple linear BDP above with a constant term ν representing immigration,

so that λk = kλ+ ν and µk = kµ. The log-likelihood becomes

`(θ) =
∞∑

k=0

Uk log(kλ+ ν) +Dk log(kµ)− Tk[k(λ+ µ) + ν]. (3.16)

Unfortunately, if we take the derivative of the log-likelihood with respect to λ or ν, the

unknown appears in the denominator of the terms of the infinite sum. However, since each

summand is a concave function of the unknown parameters, we can separate them in a

minorizing function H such that for all θ, H
(
θ|θ(m)

)
≤ `(θ) and H

(
θ(m)|θ(m)

)
= `
(
θ(m)

)
as

follows:

`(θ) ≥ H
(
θ|θ(m)

)

=
∞∑

k=0

Uk
[
pk log

(
pkλ
)

+ (1− pk) log
(
(1− pk)ν

)]
+Dk log(µ)−

[
k(λ+ µ) + ν

]
Tk,

(3.17)

where

pk =
kλ(m)

kλ(m) + ν(m)
. (3.18)

Then letting Q
(
θ | θ(m)

)
= E

(
H(θ) | Y,θ(m)

)
be the surrogate function, this minoriza-

tion forms the basis for an EM algorithm in which a step of the minorize-maximize (MM)

algorithm takes the place of the M-step, and the ascent property of the EM algorithm is
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preserved (Lange, 2010b). Maximizing Q with respect to λ and ν yields the updates

λ(m+1) =

∞∑

k=0

pkE(Uk|Y)

E(Tparticle|Y)
, and (3.19a)

ν(m+1) =

∞∑

k=0

(1− pk)E(Uk|Y)

t
. (3.19b)

Expression (3.19a) is similar to (3.15a), the update for λ in the simple BDP. The difference

lies in that each E(Uk|Y) in this case is weighted by the proportion of additions at state k

due to births, not immigrations. The update for µ is the same as (3.15b).

3.2.4.3 Logistic/restricted growth

To illustrate an EM algorithm for more complicated rate specifications in which no MM

update is evident and the rates no longer depend on the current state k in a linear way,

we examine a model for restricted population growth. Typical deterministic population

models often incorporate limitations on population size due to the carrying capacity K of the

environment. One famous example is the logistic model of population growth (Murray, 2002).

Continuous-time stochastic analogs have previously required a finite cap on population size

(Tan and Piantadosi, 1991). These stochastic models roughly mimic the behavior of the

deterministic model for population sizes below K, but are limited because they do not allow

growth beyond K. Here we present a model which supports transient growth beyond the

carrying capacity, but where the population size tends to a balance between restricted growth

and death.

Suppose births are cooperative, requiring two parents, but fecundity decays as the number

of extant particles increases, and death remains an independent process such that λk =

λk2e−βk and µk = kµ. Here, we can interpret the carrying capacity roughly as the population

size k > 0 at which λk ≈ µk. Ignoring irrelevant terms, the surrogate function becomes

Q
(
θ | θ(m)

)
=
∞∑

k=0

E(Uk|Y)[log(λ)−βk] +E(Dk|Y) log(µ)−E(Tk|Y)[λk2e−βk +kµ]. (3.20)
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Since λ and β appear together, we opt for a numerical Newton step. The gradient of Q with

respect to these parameters is

F =




E(U |Y)

λ
−
∞∑

k=0

k2e−βkE(Tk|Y)

−
∞∑

k=0

[
kE(Uk|Y) + λk3e−βkE(Tk|Y)

]



, (3.21)

and the Hessian is

H =




−E(U |Y)

λ2
−
∞∑

k=0

k3e−βkE(Tk|Y)

−
∞∑

k=0

k3e−βkE(Tk|Y) λ
∞∑

k=0

k4e−βkE(Tk|Y).



. (3.22)

Then we update these parameters by


λ

(m+1)

β(m+1)


 =


λ

(m)

β(m)


−H−1F. (3.23)

The ascent property is preserved when a Newton step is used in place of an exact M-step

(Lange, 1995a). The update for µ is the same as (3.15b).

3.2.4.4 SIS epidemic models

Under a very common epidemic model, members of a finite population of size N are classified

as either “susceptible” to a given disease or “infected” (Bailey, 1964; Andersson and Britton,

2000). Susceptibles become infected in proportion to the number of currently infected in the

population, and infecteds revert to susceptible status with a certain rate independent of how

many infecteds there are. This idealized susceptible-infectious-susceptible (SIS) infectious

disease model specifies a general birth-death process in which we track the number of infect-

eds. Let λk = βk(N − k)/N be the rate of new infections when there are already k infected

in the population. Let µk = γk/N be the rate of recovery of infecteds to susceptibles. Then

if θ = (β, γ), we have

Q
(
θ|θ(m)

)
=

N∑

k=0

E(Uk|Y) log(β) + E(Dk|Y) log(γ)− E(Tk|Y)(k(N − k)β + kγ)/N, (3.24)
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and the update for β is

β(m+1) =
NE(U |Y)

N∑

k=0

(N − k)kE(Tk|Y)

. (3.25)

The update for γ is

γ(m+1) =
NE(D|Y)

E(Tparticle|Y)
. (3.26)

3.2.4.5 Generalized linear models

Our general framework allows assessment of the influence of covariates on the rates of a gen-

eral BDP in a novel way. Suppose we sample observations from independent processes Xi(τ),

i = 1, . . . , N and observe Yi = (Xi(0), Xi(ti)) associated with d covariates zi = (zi1, . . . , zid)
t.

These processes may represent different subjects in a study. We model the birth and death

rates λik and µik for each process/subject Xi as functions of zi and unknown d-dimensional

regression coefficients θλ and θµ in a generalized linear model (GLM) framework. We link

log(λik) = g(k, ztiθλ) and log(µik) = h(k, ztiθµ), (3.27)

where g(·) and h(·) are scalar-valued functions. We note the possibility that covariates

may differ between θλ and θµ through trivial modification; to ease notation, we do not

explore this direction. Given N independent processes, we sum log-likelihoods to arrive at

the multiple-subject surrogate function:

Q
(
θ|θ(m)

)
=

N∑

i=1

∞∑

k=0

[
E(Uk|Yi)g(k, ztiθλ) + E(Dk|Yi)h(k, ztiθµ)

− E(Tk|Yi)
(
eg(k,z

t
iθλ) + eh(k,ztiθµ)

) ]
.

(3.28)

Although we cannot usually maximize this surrogate function for all elements of (θλ,θµ)

simultaneously, a Newton step is often straightforward to derive.

As an example, consider generalized linear model extension of the simple linear BDP in

which

log(λik) = log(k) + ztiθλ, and log(µik) = log(k) + ztiθµ. (3.29)
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Taking the gradient of the corresponding surrogate function Q with respect to the parameters

θλ yields

∇θλQ =
N∑

i=1

E(U |Yi)zi − ez
t
iθλE(Tparticle|Yi)zi (3.30)

and the second differential (Hessian) of Q is

d2
θλ
Q = −

N∑

i=1

ez
t
iθλE(Tparticle|Yi)ziz

t
i. (3.31)

Combining these, we arrive at the Newton step for the parameter vector θλ:

θ
(m+1)
λ = θ

(m)
λ −

(
d2
θλ
Q
)−1∇θλQ. (3.32)

A similar update can be found for θµ. These updates are examples of the gradient EM

algorithm for regression in Markov processes described by Wanek et al (1993) and Lange

(1995a). It is worth noting that the Hessian matrix d2
θλ
Q can become ill-conditioned, making

it difficult to invert for the Newton step in (3.32) for some problems. Unfortunately there

is no quasi-Newton option since in general E(Tparticle|Y)ez
t
iθλ is unbounded. An alternative

to inversion of the Hessian matrix is cyclic coordinate descent in which a Newton step is

performed for each coordinate θj individually. This carries the advantage of avoiding matrix

inversion, but convergence is slower and the ascent property must be checked at each Newton

step.

3.2.5 Implementation

Before presenting simulation results and our application to microsatellite evolution, we briefly

outline some implementation details that ease our subsequent analyses.

3.2.5.1 E-step acceleration

The E-step in these EM algorithms for BDP estimation usually involves infinite weighted

sums of the conditional expectations E(Uk|Y), E(Dk|Y), and E(Tk|Y). For example, when
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estimating λ in the simple linear BDP, we must evaluate

E(U |Y) =
∞∑

k=0

E(Uk|Y) =

∞∑

k=0

λkL−1
[
fa,k(s) fk+1,b(s)

]
(t)

Pa,b(t)
. (3.33)

Fortunately, the conditional expectations of Uk, Dk, and Tk are usually small for k �
min(a, b) and k � max(a, b), so it is possible to replace the infinite sum in (3.33) by a finite

one. We find an additional increase in computational efficiency by exchanging the order of

Laplace inversion and summation. Then (3.33) becomes

E(U |Y) ≈
L−1

[
kmax∑

k=kmin

λkfa,k(s)fk+1,b(s)

]
(t)

Pa,b(t)
, (3.34)

where we choose kmin to be the largest k < min(a, b) such that λk|fa,k(s)−fk+1,a| < 10−8 and

kmax to be the first k > max(a, b) such that λk|fa,k(s)fk+1,b(s)| < 10−8. In practice, we rarely

need to compute expectations for k less than min(a, b)− 10 or greater than max(a, b) + 10.

3.2.5.2 Quasi-Newton acceleration of EM iterates

EM algorithms are notorious for slow convergence, especially near optima. When appropri-

ate, we exploit the quasi-Newton acceleration method introduced by Lange (1995b) in our

implementations. Other acceleration methods exist, and may give better results, depend-

ing on the problem (Lange, 1995a; Louis, 1982; Meilijson, 1989; Jamshidian and Jennrich,

1993). Figure 3.2 shows the log-likelihood function and iterates for the basic EM and accel-

erated EM methods in the simple linear model. Since the quasi-Newton acceleration method

does not guarantee that the likelihood increases at each step, “step-halving” is occasionally

necessary to achieve ascent. Note that this requires likelihood evaluation at least once per

iteration. Our approach is advantageous in that we can efficiently calculate this likelihood

(transition probability) for any general BDP (Crawford and Suchard, 2011).
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Figure 3.2: Effect of quasi-Newton acceleration on iterates of the expectation-maximization

(EM) algorithm for a simple linear BDP with birth rate λ and death rate µ. Contour lines

sketch the log-likelihood from N = 50 discrete samples. Iterates are shown with the “+”

symbol. On the left, ordinary EM iterates converge very slowly in the neighborhood of

the maximum, for a total of 36 iterations. On the right, EM iterates using quasi-Newton

acceleration make large jumps and converge rapidly in 15 iterations.
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3.2.5.3 Asymptotic variance of EM estimates

Finding the observed information matrix for an EM estimate can be challenging. Louis

(1982) gives formulae for the observed information, which Doss et al (2010) use to derive

analytic expressions for the observed information for very simple BDPs. However, analytic

expressions for the asymptotic variance are generally hard to find for more complicated

models. We instead turn to the supplemented EM (SEM) algorithm of Meng and Rubin

(1991), which computes the information matrix of the EM estimate of θ after the MLE θ̂

has been found. The observed information is I(θ̂) = −d2Q(θ̂|θ̂)(I − dM(θ̂)), where M(θ)

is the EM algorithm map such that θ(m+1) = M(θ(m)). We numerically approximate the

differential dM at the termination of the EM algorithm.

We note also that since we are able to calculate transition probabilities directly, the

observed data log-likelihood is easily computed as

`(θ) =
N∑

i=1

logPai,bi(ti), (3.35)

where ai = Xi(0) and bi = Xi(ti). As an alternative to the approaches outlined above,

we can calculate the Hessian using purely numerical techniques. If H(θ̂) = d2`(θ̂) is the

numerical Hessian evaluated at the estimated value θ̂, then Î ≈ −H(θ̂).

3.3 Results

3.3.1 Laplace convolution E-step comparison

To illustrate the computational speedup that the Laplace convolution formulae (3.13) and

their acceleration in section 3.2.5.1 achieve over existing methods, we calculate conditional

expectations for various BDP models for performing the E-step and report computing times

in Table 3.1. The first method in the table employs rejection sampling of trajectories where

we condition on the starting state, and reject based on the ending state (Bladt and Sorensen,

2005). The second method adapts an endpoint-conditioned simulation algorithm (Hobolth,

2008; Hobolth and Stone, 2009). The third considers näıve time-domain convolution (Equa-
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tion (3.12)) using the integrate function in R. Finally, we compute the same quantities via

the Laplace-domain convolution method outlined in section 3.2.3. In our implementations,

we have made every effort to reuse as much shared R code as possible, with the aim of making

the routines comparable. We consider four different BDPs. For a simple linear BDP and

a linear BDP with immigration, we use the data Y = (X(0) = 19, X(2) = 27). Under a

logistic model, the data are Y = (X(0) = 10, X(2) = 16), and for the SIS model the data

are Y = (X(0) = 10, X(2) = 31). We list all model parameter values in Table 3.1.

As seen in Table 3.1, the Laplace convolution method is often more than 10 times faster

than the other methods. In terms of time-performance, the endpoint-conditioned simulation

stands as second best, achieving almost comparable speed in the logistic BDP. To interpret

this finding, we recall that Hobolth (2008) constructs an endpoint-conditioned simulation

for performing the E-step in finite state-space Markov chains. Therefore, to adapt this

method we approximate each BDP by a Markov chain with a finite transition rate matrix.

To choose the arbitrary dimension of this matrix we truncate the process at the first state

k > max(a, b) such that Pa,k(t) < 10−5, and the resulting estimates agree substantially with

the other methods. We are aware that the size of the rate matrix affects the speed of the

simulation routine, so we wish to keep the matrix as small as possible. On the other hand, the

matrix must remain large enough to include states that may be visited with high probability

in a path from a to b over time t. For the logistic model, such a stringent upper bound lies

just above the relatively small carrying capacity. However, endpoint-conditioned simulation

completely fails for the SIS model, an issue we discuss later. Finally, and quite naturally, the

two convolution methods arrived at nearly the same answer for each model; the difference

is largely due to very different sources of numerical error, but at disparate computational

costs.

3.3.2 Synthetic examples

To evaluate the performance of our EM algorithms, we simulate discrete observations from

several of the BDPs outlined above. For each sample, we draw starting pointsXi(0) uniformly
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Rejection Time- Laplace-

Model Quantity sampling ECS conv conv

Simple linear (3.2.4.1) E(U |Y) 1.449 0.741 19.606 0.084

λ = 0.5, µ = 0.3 E(D|Y) 1.375 0.743 21.224 0.086

E(Tparticle|Y) 1.432 0.636 16.488 0.087

Immigration (3.2.4.2)
∑

k pkE(U |Y) 1.192 0.697 15.669 0.085

λ = 0.5, ν = 0.2 E(D|Y) 1.324 0.689 21.058 0.086

µ = 0.3 E(Tparticle|Y) 1.319 0.703 14.961 0.089

Logistic (3.2.4.3) E(U |Y) 50.810 0.162 21.907 0.102

λ = 0.5, α = 0.2 E(D|Y) 56.957 0.180 20.851 0.102

µ = 0.3
∑

k k
2e−kαE(Tk|Y) 50.764 0.168 21.623 0.107

SIS (3.2.4.4) E(U |Y) 7.880 * 5.295 0.059

β = 0.5, γ = 0.3 E(D|Y) 8.886 * 2.749 0.048
∑

k(N − k)kE(Tk|Y) 8.456 * 4.269 0.053

Table 3.1: Compute times (seconds) to perform various E-steps for four different BDP mod-

els. We report text section numbers in which the models are described in parentheses. For

each E-step, we consider several methods. In all cases, the Laplace method takes substan-

tially less time. The endpoint-conditioned simulation (ECS) method fails for the suscepti-

ble-infectious-susceptible (SIS) infectious disease model.

80



from the integers 0 to 20, and times ti uniformly from 0.1 to 3. We then simulate a trajectory

of the BDP and record the state Xi(ti). For the generalized linear model (GLM), we employ

the simple linear parameterization with a log link with d = 2 covariates. We specify the

covariates zi = (zi,1, zi,2) as follows: zi,1 ∼ N(1, σ2), zi,2 ∼ N(2, σ2) for i = 1, . . . , N/2,

zi,1 ∼ N(2, σ2) and zi,2 ∼ N(1, σ2) for i = N/2 + 1, . . . , N , where σ2 = 0.1.

Table 3.2 reports the number of simulated observations, true parameter values, point-

estimates, asymptotic standard error estimates for all model parameters. It is important to

note that the MLEs can differ substantially from the parameter values used to perform the

simulation, regardless of the algorithm used to find the MLEs. This is due to several factors,

including: 1) missing state paths; 2) stochasticity of the BDP generating the state paths; 3)

arbitrary choice of starting states Xi(0); and 4) finite sample sizes. Despite these limitations

inherent in learning from partially observed stochastic processes, the point-estimates match

the true parameter values rather well.

3.3.3 Application to microsatellite evolution

Microsatellites are short tandem repeats of characters in a DNA sequence (Schlötterer, 2000;

Ellegren, 2004; Richard et al, 2008). The number of repeated “motifs” in a microsatellite of-

ten changes over evolutionary timescales. The molecular mechanism responsible for changes

in repeat numbers is known as “polymerase slippage” (Schlötterer, 2000). Several researchers

have proposed linear BDPs for use in analyzing evolution of microsatellite repeat numbers

(Whittaker et al, 2003; Calabrese and Durrett, 2003; Sainudiin et al, 2004). However, many

investigations demonstrate that microsatellite mutability depends on the number of repeats

already present, motif size, and motif nucleotide composition (Chakraborty et al, 1997; Eck-

ert and Hile, 2009; Kelkar et al, 2008; Amos, 2010). Exactly how these factors affect addition

and deletion rates remains an open question (Bhargava and Fuentes, 2010).

To our knowledge, no previous study formulates or fits a general BDP in which motif size

and composition are treated as a covariates in a generalized regression framework, despite

the scientific interest in examining such effects on microsatellite evolution. Webster et al
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Model Parameter True Estimate SE

Simple linear (N = 500) λ 0.5 0.5039 0.0269

(3.2.4.1) µ 0.2 0.1981 0.0254

Immigration (N = 800) λ 0.2 0.2182 0.0129

(3.2.4.2) ν 0.1 0.1016 0.0213

µ 0.25 0.2488 0.0231

Logistic (N = 1500) λ 0.3 0.2917 0.0035

(3.2.4.3) α 0.5 0.4942 0.0397

µ 0.05 0.0456 0.0633

SIS (N = 1000) β 0.1 0.1025 0.0048

(3.2.4.4) γ 2.0 2.1374 0.0367

GLM (N = 1000) θλ,1 0.25 0.2585 0.0393

(3.2.4.5) θλ,2 0.1 0.1143 0.0402

θµ,1 0.2 0.1973 0.0457

θµ,2 0.05 0.0877 0.0457

Table 3.2: Point-estimates and their standard errors (SE) for simulated observations under

various BDPs. We report the text section describing each of the models in parentheses. The

method for generating the rates in the generalized linear model (GLM) BDP is described in

the text.
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(2002) study the evolution of 2467 microsatellites common (orthologous) to both humans

and chimpanzees, providing an ideal dataset for studying the influence of repeat number

and motif size on addition and deletion rates. For each of these observed microsatellites,

Webster et al (2002) record the motif nucleotide pattern and the number of repeats of this

motif found in chimpanzees and humans, and estimate a mutability parameter that controls

the rate of addition and deletion.

We now present an extended application of our BDP inference technique to chimpanzee-

human microsatellite evolution, drawing on the data in Table 6 of the supplementary informa-

tion in Webster et al (2002). We introduce several novel modeling and inferential techniques

relevant to the study of microsatellites, and deduce the effect of motif size and composition

on microsatellite addition and deletion rates. While the likelihood takes a slightly more

complicated form, our BDP regression technique is straightforward to implement and yields

insight into the complicated process of microsatellite evolution.

3.3.3.1 Evolutionary model

To analyze the data as realizations from a BDP, we must acknowledge the evolutionary re-

lationship between chimpanzees and humans. Suppose the most recent common ancestor

of chimpanzees and humans lived at time t in the past, so that an evolutionary time of

2t separates contemporary humans and chimpanzees. We note that under mild conditions,

general BDPs are reversible Markov chains (Renshaw, 2011). Therefore, assuming station-

arity of the chimpanzee microsatellite length distributions, we stand justified in reversing

the evolutionary process from the ancestor to chimpanzee, so that for estimation purposes

we may regard humans as direct descendants of modern chimpanzees (or vice-versa) over an

evolutionary time of 2t. If C is the number of repeats in a chimpanzee microsatellite and H

is the number of repeats in the corresponding human microsatellite, then the likelihood of
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Figure 3.3: Reversibility of the BDP implies that the evolutionary relationship between

contemporary chimpanzees and the most recent common ancestor can be inverted. On the

left, the most recent common ancestor of chimpanzees and humans lived at time T in the

past. At a certain locus, chimpanzees have a microsatellite consisting of 2 repeats of the

motif AAC, and at an orthologous locus, humans have 3 repeats of the motif. The number of

repeats in the ancestor is unknown. On the right, using a probabilistic justification explained

in the text, we may interpret the evolutionary relationship between chimpanzees and humans

as unidirectional, while “integrating out” the number of repeats at the ancestral locus.

the observation Y = (C,H) is

Pr(Y) =
∞∑

k=0

πkPk,C(t) Pk,H(t)

= πC

∞∑

k=0

PC,k(t) Pk,H(t)

= πCPC,H(2t),

(3.36)

where πk is the equilibrium probability of the microsatellite having k repeats. The second

line follows by reversibility and the third by the Chapman-Kolmogorov equality. Therefore,

the log-likelihood of the observation Y is now log πC +`(θ; Y). Figure 3.3 shows a schematic

representation of this reversibility argument.
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3.3.3.2 BDP rates and equilibrium distribution

The observed data for microsatellite i are Yi = (Xi(0), Xi(1)), where Xi(0) is the number of

repeats observed in chimpanzees, Xi(1) is the number of repeats observed in humans, and

the evolutionary time separating humans and chimpanzees is scaled to unity. In addition to

the evolutionary relationship explained above, there are other complications: in the Webster

et al (2002) dataset, it is evident that microsatellites with small numbers of repeats are not

detected. Rose and Falush (1998) argue that there is a minimum number of repeats necessary

for microsatellite mutation via polymerase slippage. Sainudiin et al (2004) interpret this

finding as justification for truncating the state-space of BDP at xmin, so that X(τ) ≥ xmin.

To avoid questions of ascertainment bias (see e.g. Vowles and Amos (2006)), and to make our

results comparable to those of past researchers, we define a microsatellite to be a collection

of more than xmin repeated motifs, where xmin is 9 for repeats of size 1, 5 for repeats of size

3 and 4, and 2 for repeats of size 5.

Researchers have also observed that microsatellites do not tend to grow indefinitely

(Kruglyak et al, 1998). The maximum number of repeats in the Webster et al dataset

is 47. This suggests a finite nonzero equilibrium distribution of microsatellite lengths. To

achieve such an equilibrium distribution, we preliminarily view the evolution as a linear BDP

with immigration on a state-space that is truncated below xmin. It is reasonable to assume

that rates of addition and deletion depend linearly on how many repeats are already present.

Then for a microsatellite that currently has k repeats, the birth and death rates are

λk =




kλ+ λ k ≥ xmin

0 k < xmin

and µk =




kµ k > xmin

0 k ≤ xmin.

(3.37)

This gives a geometric equilibrium distribution for the number of repeats:

πk =





(
1− λ

µ

)(
λ

µ

)k−xmin−1

k ≥ xmin

0 k < xmin,

(3.38)

when λ < µ (Renshaw, 2011). We choose this simple model so that the BDP has a simple

closed-form nonzero equilibrium solution that is easy to incorporate into the log-likelihood.
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Note that the constraint λ < µ does not mean that the rate of microsatellite repeat addition is

always less than the rate of deletion, since it is possible that λk > µk for small k. Additionally,

λ < µ does not mean that the number of repeats in a microsatellite tends to zero over long

evolutionary times — the equilibrium distribution (3.38) assigns positive probability to all

repeat numbers greater than or equal to xmin.

3.3.3.3 Likelihood and surrogate function

Now we augment the log-likelihood with the log-equilibrium probability of observing Xi(0)

chimpanzee repeats

F (θ) =
N∑

i=1

log πXi(0) + `(θ; Yi), (3.39)

where `(θ; Yi) is equivalent to (3.10). Including the influence of the equilibrium distribution

is similar to imposing a prior distribution on λ and µ. To ensure the existence of the

equilibrium distribution (3.38), we must also incorporate the constraint λ < µ. To achieve

maximization of the augmented log-likelihood (3.39) under this constraint, we impose a

barrier term of the form γ log(µ − λ). By iteratively maximizing and sending the barrier

penalty γ → 0, we can achieve maximization under the inequality constraint. More formally,

if we let

H(θ) =
N∑

i=1

[
log πXi(0) + `(θ; Yi)

]
+ γ log(µ− λ), (3.40)

then

argmax
θ

H(θ)→ argmax
θ

F (θ) (3.41)

under the constraint λ < µ as γ → 0.

To incorporate and evaluate the influence of motif size and composition heterogeneity, we

now treat λ and µ in the ith observation as functions of the covariate vector zi in a general

BDP. Suppose microsatellite i has motif size ri. We code the vectors zi as follows:

zi =





(1, 0, 0, pa, pc, pt)
t ri = 1

(1, 1, 0, pa, pc, pt)
t ri = 2

(1, 0, 1, pa, pc, pt)
t ri ≥ 3

(3.42)
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where px is the proportion of x nucleotides per repeat. We define a single parameter α that

controls the difference between λ and µ. Then in the ith microsatellite, the complete model

becomes

log(λk,i) = log(k + 1) + α + ztiθ and log(µk,i) = log(k) + ztiθ. (3.43)

Therefore (α,θ)t is the 7 × 1 vector of unknown parameters. Putting all this together, the

surrogate function becomes

Q
(
θ|θ(m)

)
∝
(

N∑

i=1

Xi(0)α + log (1− eα) +

[
∞∑

k=0

E(Uk|Yi)(α + ztiθ) + E(Dk|Yi)z
t
iθ

− E(Tk|Yi)
(

(k + 1)eα+ztiθ + kez
t
iθ
)])

+ γ log(−α),

(3.44)

where α < 0 since λ < µ, and we send the penalty γ → 0 as the algorithm converges. We

use a gradient EM algorithm to find the MLE of (α,θ).

Table 3.3 reports the parameter estimates, along with asymptotic standard errors. From

these results, we infer that motifs of different sizes and composition have different charac-

teristics under our evolutionary model. Specifically, λ and µ are greatest for dinucleotide

repeats, as compared to motifs with one or at least three repeats. Motifs consisting mostly of

A and T nucleotides also give rise to higher λ and µ. These conclusions are largely consistent

with the descriptive results obtained by Webster et al (2002). Our analysis also provides a

natural probabilistic justification for the existence of a finite nonzero equilibrium distribution

of microsatellite repeat numbers and a formal statistical framework for deducing the effect

of motif size and repeat number on mutation rates.

3.4 Discussion

Application of stochastic models in statistics requires a flexible and general approach to

parameter estimation, without which even the most realistic model becomes unappealing to

researchers who wish to learn from the data they have collected. Estimation for continuously

observed BDPs is straightforward and well-established. For partially observed BDPs, our

approach is unique because it requires only two simple ingredients: the functional form
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Parameter Covariate Estimate SE

θ1 Intercept -1.3105 0.1236

θ2 ri = 2 0.2854 0.0983

θ3 ri ≥ 3 -1.5405 0.1079

θ4 pa 0.2207 0.1725

θ5 pc -0.3822 0.0577

θ6 pt 0.0477 0.0002

α birth -0.0889 0.0039

Table 3.3: Maximum likelihood estimates of parameters in the microsatellite model and their

asymptotic standard errors. The first three elements of θ correspond to the motif size ri,

and the last three correspond to the motif nucleotide composition. The parameter α controls

the difference between the birth and death rates. The ith microsatellite birth rate is then

λ = exp(α + ztiθ) and the death rate is µ = exp(ztiθ). Estimated birth and death rates

are higher for dinucleotide repeats than for mononucleotide repeats or microsatellites whose

motifs have 3, 4, or 5 nucleotides. Mircrosatellites whose motif consists, for example, of A

nucleotides have higher birth and death rates compared to G nucleotides.
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of the birth and death rates λk(θ) and µk(θ) for all k, and an exact or approximate M-

step. A third ingredient is optional: the Hessian of the surrogate function is useful when

asymptotic standard errors are desired. However, this matrix can often be approximated

numerically upon convergence of the EM algorithm, since the observed-data likelihood is

available numerically via (3.35). With these ingredients in hand, even elusive general BDPs

become tractable.

In previous work on estimation for BDPs, completion of the E-step typically relies on

time-domain numerical integration or simulation of BDP trajectories. As we show in Table

3.1, both rejection sampling and endpoint-conditioned simulation can occasionally perform

satisfactorily, especially in comparison to time-domain convolution. However, endpoint-

conditioning is designed for finite state-space Markov chains, and it relies on a matrix eigen-

decomposition to calculate transition probabilities. As we show for the SIS model, this

matrix becomes nearly singular, causing the simulation algorithm to fail, even when we

choose parameter values that are not biologically unreasonable. The Laplace convolution in

the E-step of our algorithm is more generic with equivalent or better performance. For this

reason, a variation on our Laplace convolution method for computing the E-step may offer

further use in estimation for non-BDP finite Markov chains as well, such as nucleotide or

codon substitution models. For some linear BDPs, the availability of a generating function

furnishes analytic E- and M-steps yielding very fast parameter updates in closed-form (Doss

et al, 2010). For some models, these tools provide the asymptotic variance of the MLE in

closed-form. However, for the majority of BDPs, we must return to the Laplace convolution

method outlined in this paper.

If one cannot find analytic parameter updates in the M-step, several options remain

available. With a minorizing function as in section 3.2.4.2, an EM-MM algorithm is viable.

Further, one or more numerical Newton steps offers an alternative, as in sections 3.2.4.3

and 3.2.4.5. One may employ other gradient-based methods as well. Although the MM

update derived for the BDP with immigration (section 3.2.4.2) is appealing in its simplicity,

multiple minorizations of the likelihood can result in very slow convergence, since the sur-

rogate function lies far from the true likelihood for most values of θ. In addition, Newton

89



steps that require matrix inversion may suffer since the Hessian of the surrogate can become

ill-conditioned.

Even with the substantial speedup offered by our Laplace convolution method for per-

forming the E-step and quasi-Newton acceleration of the EM iterates, our algorithms can

move slowly toward the MLE. Here, näıve numerical optimization of the incomplete data

likelihood can sometimes run computationally faster. However, such techniques perform

very poorly when the number of parameters increases and they often require specification

of tuning constants in order to reach the global optimum. For BDP estimation problems,

EM algorithms offer several other advantages over näıve numerical optimization, and these

benefits are especially stark when the M-step is available in closed-form. First, when the log-

likelihood is locally convex, the EM algorithm is robust with respect to the initial parameter

values near the maximum, and EM algorithms generally do not need tuning parameters. Fur-

ther, the ascent property ensures the iterates will approach a maximum. Perhaps the most

important reason to consider EM algorithms is that they can accommodate high-dimensional

parameter spaces without substantially increasing the computational complexity of the algo-

rithm. This is especially useful in models with many unknown parameters when performing

regression with covariates (section 3.2.4.5), or our microsatellite example. We also note the

potential for substantial computational speedup by parallelizing the E-step. When discrete

observations from a BDP are independent, the E-step may be performed in parallel for every

observation. For example, E(U |Yi) can be computed simultaneously for i = 1, . . . , N . When

speed is an issue, graphics processing units may prove useful in reducing the computational

cost of EM algorithms (Zhou et al, 2010).

With regard to our example, we present a novel way of studying the evolution of mi-

crosatellite repeats using a generalized linear model. Previous efforts often ignore the evo-

lutionary relationship between organisms, use incomplete or equilibrium models of repeat

numbers, or fit separate models to motifs of different sizes. We treat motif size as a categor-

ical variable and incorporate motif nucleotide composition, allowing us to fit a single model

to all the microsatellite observations simultaneously. Though our rate specification (3.37)

and resulting equilibrium distribution (3.38) are intended to be somewhat simplistic, more
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sophisticated models that are informed by biological considerations may be fruitful. The

only requirement in our setup is that the gradient and Hessian of λk, µk, and πk be available

for any repeat number k. Although our microsatellite example is limited in scope, it is easy

to imagine a more comprehensive study. For example, incorporating more sophisticated

motif nucleotide composition covariates and location of the microsatellite on the chromo-

some might provide additional insight into the evolutionary process. Our EM framework is

nearly ideal for these types of studies, since the number of unknown parameters does not

substantially increase the computational burden of the M-step, and the E-step is completely

unaffected by the number of parameters.

Interestingly, we attempted to use the generic nonlinear regression R function nlm to

validate the MLEs obtained by our EM algorithm for the microsatellite evolution problem,

starting at a variety of initial values, including the MLE found by our EM algorithm. This

näıve optimizer failed to converge in every case. We speculate that this is because the small

numerical errors in the likelihood evaluation have similar order of magnitude as the curvature

of the likelihood function near the maximum. Our EM aglorithms take advantage of analytic

derivatives of the surrogate function instead of the likelihood, and hence are less susceptible

to small errors in the numerical gradient.

3.5 Conclusion

Previous work on parameter estimation in BDPs almost exclusively confines itself to infer-

ence of birth and death rates under the simple linear model. To rectify this situation, we

present a flexible and robust framework for deriving EM algorithms to estimate parameters

in any general BDP, using discrete observations. We hope that this contribution encourages

development of more sophisticated and realistic birth-death models in applied work, since

researchers can now estimate parameters using more complicated rate structures, even when

the data are observed at discrete times.
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CHAPTER 4

Diversity, disparity, and evolutionary rate estimation

for unresolved Yule trees

The branching structure of biological evolution confers statistical dependencies on phenotypic

trait values in related organisms. For this reason, comparative macroevolutionary studies

usually begin with an inferred phylogeny that describes the evolutionary relationships of

the organisms of interest. The probability of the observed trait data can be computed by

assuming a model for trait evolution, such as Brownian motion, over the branches of this fixed

tree. However, the phylogenetic tree itself contributes statistical uncertainty to estimates of

other evolutionary quantities, and many comparative evolutionary biologists regard the tree

as a nuisance parameter. In this paper, we present a framework for analytically integrating

over unknown phylogenetic trees in comparative evolutionary studies by assuming that the

tree arises from a continuous-time Markov branching model called the Yule process. To do

this, we derive a closed-form expression for the distribution of phylogenetic diversity, which

is the sum of branch lengths connecting a set of taxa. We then present a generalization of

phylogenetic diversity which is equivalent to the expected trait disparity in a set of taxa

whose evolutionary relationships are generated by a Yule process and whose traits evolve

by Brownian motion. We derive expressions for the distribution of expected trait disparity

under a Yule tree. Given one or more observations of trait disparity in a clade, we perform

fast likelihood-based estimation of the Brownian variance for unresolved clades. Our method

does not require simulation or a fixed phylogenetic tree. We conclude with a brief example

illustrating Brownian rate estimation for thirteen families in the Mammalian order Carnivora,

in which the phylogenetic tree for each family is unresolved.
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4.1 Introduction

Evolutionary relationships between organisms induce statistical dependencies in their phe-

notypic traits (Felsenstein, 1985). Closely related species that have been evolving separately

for only a short time will generally have similar trait values, and species whose most recent

common ancestor is more distant will often have dissimilar trait values (Harvey and Pagel,

1991). However, the origins of phenotypic diversity are still poorly understood (Eldredge

and Gould, 1972; Gould and Eldredge, 1977; Ricklefs, 2006; Bokma, 2010). Even simple

idealized models of evolutionary change can give rise to highly varying phenotype values

(Foote, 1993; Sidlauskas, 2007), and researchers disagree about the relative importance of

time, the rate of speciation, and the rate of phenotypic evolution in generating phenotypic

diversity (Ricklefs, 2004; Purvis, 2004; Ricklefs, 2006).

Comparative phylogenetic studies seek to explain phenotypic differences between groups

of taxa, and stochastic models of evolutionary change have assisted in this task. Researchers

often treat phenotypic evolution as a Brownian motion process occurring independently

along the branches of a fixed macroevolutionary tree (Felsenstein, 1985). In comparative

studies, the Brownian motion model of trait evolution has a convenient consequence: given

an evolutionary tree topology and branching times, the trait values at the concurrently

observed tips of the tree are distributed according to a multivariate normal random variable.

Brownian motion on a fixed phylogenetic tree is the basis for the most popular regression-

based methods for comparative inference and hypothesis testing (Grafen, 1989; Garland et al,

1992; Martins and Hansen, 1997; Blomberg et al, 2003; O’Meara et al, 2006; Revell, 2010). In

the regression approach, inference of evolutionary parameters of interest becomes a two-step

process: first, one must infer a phylogenetic tree; then, conditional on that tree, one estimates

relevant evolutionary parameters, usually by maximizing likelihood of the observed trait data

under the model for trait evolution. Unfortunately, the uncertainty involved in estimating the

tree propagates into the comparative analysis in a way that is difficult to account for (but see

Stone (2011)), and comparative researchers often lack a precise phylogenetic tree on which

to base a regression analysis of trait data. Modern techniques for dealing with this issue
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generally resort to simulation. Some researchers simulate a large number of possible trees

and estimate parameters conditional on a single representative tree, such as the maximum

clade credibility tree (see, for example, Alfaro et al (2009)). Alternative approaches that

utilize simultaneous simulation of trees and parameters via Bayesian methods are gaining in

popularity (Sidlauskas, 2007; Slater et al, 2012; Drummond et al, 2012).

However, simulation methods can be extremely slow and may require assumptions about

prior distributions of unknown parameters that are difficult to justify. Indeed, in macroevo-

lutionary studies, the phylogenetic tree is often not of interest per se, but must be taken

into account in order to accurately model the dependency of the traits under consideration.

Many comparative phylogeneticists regard the evolutionary tree as a nuisance parameter

in the larger evolutionary statistical model. For this reason, there is increased interest in

tree-free methods of comparative analysis that preserve information about the variance of

phenotypic values within unresolved clades (Bokma, 2010).

To develop a method for comparative inference in evolutionary studies that does not

rely on a particular tree, it is convenient to specify a generative model for phylogenetic

trees. In the Yule (pure-birth) process, every existing species independently gives birth with

instantaneous rate λ; when there are n species, the total rate of speciation is nλ (Yule,

1925). The Yule process is widely used as a null model in evolutionary hypothesis testing

and can provide a plausible prior distribution on the space of evolutionary trees in Bayesian

phylogenetic inference (Nee et al, 1994; Rannala and Yang, 1996; Nee, 2006). One can

easily derive finite-time transition probabilities (Bailey, 1964), and efficient methods exist

to simulate samples from the distribution of Yule trees, conditional on tree age, number of

species, or both (Stadler, 2011). Interestingly, some researchers have pointed out that even

the simple Yule process can have unexpected properties that may be relevant in evolutionary

theory and reconstruction (Gernhard et al, 2008; Steel and Mooers, 2010).

Due to Yule trees’ simple Markov branching structure and analytically tractable transi-

tion probabilities, many researchers have made progress in characterizing summary proper-

ties of the Yule process – that is, integrating over all Yule tree realizations. For example,

Steel and McKenzie (2002) study aspects of the shape of phylogenies under the Yule model,
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such as the distribution of the number of edges separating a subset of the extant taxa from

the MRCA; Gernhard et al (2008) find distributions of branch lengths; Steel and Mooers

(2010) study the expected length of pendant and interior edges of Yule trees; and Steel and

McKenzie (2001) and Mulder (2011) study the distribution of the number of internal nodes

separating taxa.

One important summary statistic for trees in biodiversity applications is phylogenetic

diversity (PD), defined as the sum of all branch lengths in the minimum spanning tree con-

necting a set of taxa (Faith, 1992). Applied researchers in evolutionary biology have found

PD to be useful in conservation and biodiversity applications; see, e.g., Webb et al (2002),

Moritz (2002), and Turnbaugh et al (2008). PD also has the virtue of being a mathemat-

ically tractable statistic for phylogenetic trees, and has attracted interest from researchers

interested in its properties. For example, Faller et al (2008) show that the asymptotic distri-

bution (as the number of taxa n→∞) of PD is normal and give a recursion for computing

the distribution of PD where edge lengths are integral. Mooers et al (2011) discuss branch

lengths on Yule trees and expected loss of PD in conservation applications. Most impor-

tantly for our study, Stadler and Steel (2012) find the moment-generating function for PD

conditional on n extant taxa and tree age t under the Yule model. Following on these in-

spiring results, we seek now to study analytic properties of Yule trees that are useful for

comparative evolutionary studies.

In this paper, we present a framework for computing probability distributions related to

diversity and quantitative trait evolution over unresolved Yule trees and describe methods

for estimating related parameters. We first give a mathematical description of the Yule

model of speciation and briefly discuss its properties. Next, we introduce the Markov re-

ward process, a probabilistic method for deriving probability distributions related to the

accumulation of diversity under a Yule model. In Theorem 1, we give an expression for the

probability distribution of PD under a Yule model, conditional on the number of species n,

time to the most recent common ancestor (TMRCA) or tree age t, and speciation rate λ.

We then demonstrate an important and previously unappreciated relationship between trait

disparity, the sample variance for a group of taxa (O’Meara et al, 2006), and PD for traits
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evolving on a Yule tree via Brownian motion. Theorem 2 gives an expression for the distri-

bution of expected trait disparity when integrating over the branch lengths of a Yule tree.

Next, we describe a statistical method for performing fast maximum likelihood estimation

of Brownian variance, given an unresolved clade and observed trait disparity. Our approach

does not require fixing a phylogenetic tree or specification of prior probabilities for unknown

parameters. The method is simulation-free and does not seek to infer branch lengths or

ancestral states. We show empirically that our estimators are asymptotically consistent. We

conclude with an application of our method to body size evolution in the Mammalian order

Carnivora.

4.2 Mathematical background

To aid in exposition, we briefly establish some notation. Denote the topology of a phylogenetic

tree by τ . A topology is the shape of a tree, disregarding branch lengths or age. We always

condition our calculations on the phylogenetic tree having age t with n extant taxa. Let

t1, t2, . . . denote the branching points of a tree, where tk is the time of branching from k to

k + 1 lineages. We measure time in the forward direction, so at the TMRCA, t = 0. This is

in keeping with our mechanistic orientation: the Yule process, to be developed below, runs

forward in time from 0 to t.

4.2.1 Yule processes

Let Y (t) ∈ {1, 2, . . .} be a Yule process with birth rate λ that keeps track of the number of

species at time t. The transition probabilities Pmn(t) = Pr(Y (t) = n | Y (0) = m) satisfy the

Kolmogorov forward equations

dPm1(t)

dt
= −λPm1(t), and

dPmn(t)

dt
= −λnPmn(t) + (n− 1)λPm,n−1(t)

(4.1)
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for n ≥ 1. This infinite system of ordinary differential equations can be solved to yield closed

forms for the finite-time transition probabilities,

Pmn(t) =

(
n− 1

m− 1

)
e−mλt(1− e−λt)n−m, (4.2)

which have a negative binomial form (Bailey, 1964). In the Yule process, we are only

concerned with the number of species that exist at any moment in time, not their genealogy.

That is, we assume that the lineage that branches is chosen uniformly from all extant lineages.

The transition probability (4.2) is useful for performing statistical inference: suppose we

know the branching rate λ and the age t of a tree, and we observe Y (t) = n. Then (4.2)

gives the likelihood of our observation. Figure 4.1 shows an example realization of a Yule tree,

with the corresponding counting process diagram below. In this example, λ = 2, Y (0) = 2,

and Y (t = 1) = 12.

4.2.2 Markov reward processes

In a Markov reward process, a non-negative reward ak accrues for each unit of time a Markov

process spends in state k (Neuts, 1995). Consider a Yule process Y (s) beginning at Y (0) = 1

and ending at Y (t) = n. The accumulated reward up to time t is

Rt =

∫ t

0

aY (s) ds. (4.3)

When Y (s) is observed continuously from time 0 to t, the process aY (s) is a fully-observed

step function, and Rt can be easily computed as the area under that function. To illustrate,

suppose that the process makes jumps at times t1, . . . , tn−1, and we define t0 = 0 and tn = t.

We assume Y (s) is right-continuous, so Y (ti) = i + 1. Then at time t, the accumulated

reward is

Rt =
n∑

i=1

aY (ti−1)(ti − ti−1) =
n∑

i=1

ai(ti − ti−1). (4.4)

When only Y (0) and Y (t) are observed, it can be challenging to compute the distribution of

Rt. In our proofs of Theorems 1 and 2, we appeal to the method developed by Neuts (1995)

and Minin and Suchard (2008) to find reward probabilities conditional on Y (0) and Y (t).
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Figure 4.1: Example of a Yule (pure-birth) tree with the corresponding counting process

Y (t) below. The birth rate in this example is λ = 2. In the counting process representation

of this realization, we only keep track of the total number of species in existence at each

time.
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Let

vmn(x, t) = Pr(Rt = x, Y (t) = n | Y (0) = m) (4.5)

be the joint probability that the reward at time t is x and the process is in state n, given that

the process began in state m at time 0. This joint probability formulation is more math-

ematically convenient than the more natural conditional probability, as we demonstrate in

the proofs of the Theorems. However, it is easy to transform vmn(x, t) into the conditional

probability via Bayes’ rule, as we show below. Appendix 4.7 gives a preliminary lemma de-

riving a representation for Yule reward processes that will be useful in proving the Theorems

that follow.

4.3 The distribution of phylogenetic diversity in a Yule process

The Yule process is a simple and analytically tractable mechanistic model for producing the

birth times of a clade. If we assume that the species that undergoes speciation is chosen

randomly from the extant species at that time, then the Yule process is also a distribution

over bifurcating trees of age t. The Markov rewards framework provides a technique to

understand integrals over Yule processes in precisely this context. In this section, we study

the distribution of PD in trees generated by a Yule process. PD depends only on the

branching times, and not the underlying topology, of the phylogenetic tree, making it a

suitable first step in our goal of integrating over trees in comparative studies.

To proceed, let Y (s) be a Yule process with branching rate λ that keeps track of the

number of lineages at time s. We seek an expression for PD, the total branch length of

the tree, which is equivalent to the area under the trajectory of the counting process Y (s).

Define a Markov reward process with Y (s) and ak = k for k = 1, 2, . . .. Then

Rt =

∫ t

0

aY (s) ds =

∫ t

0

Y (s) ds. (4.6)

We now state our first Theorem giving an expression for the distribution of Rt in a Yule

process.
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Theorem 1. For a Yule process with birth rate λ, starting at Y (0) = m and ending at

Y (t) = n,

vmn(x, t) =





δ(x−mt)e−mλt m = n

λn−me−λx

(n−m− 1)!

n∑

j=m

(
n− 1

j − 1

)(
j − 1

m− 1

)
(−1)j−m(x− jt)n−m−1H(x− jt) n > m

(4.7)

where δ(x) is the Dirac delta function and H(x) is the Heaviside step function.

The proof of this Theorem is given in Appendix 4.8. There has been disagreement about

whether the definition of PD in different contexts includes the root lineage (Faith, 1992;

Faith and Baker, 2006; Crozier et al, 2006; Faith, 2006). We do not take a stance on this

issue but note that if t is the stem age of an unresolved clade, then taking a1 = 1 in (4.3)

includes the root in the distribution of accumulated PD, and a1 = 0 does not. The form of

(4.7) will change slightly if m = 1 and a1 = 0.

The probability distribution of PD, conditional on Y (0) = m and Y (t) = n, is

fY (x | m,n, t, λ) =
vmn(x, t)

Pmn(t)
, (4.8)

where Pmn(t) is the Yule transition probability (4.2). This family of probability distribu-

tions has some interesting properties. Figure 4.2 shows fY (x|m,n, t, λ) for m = 1 (with

a1 = 1), n = 1, . . . , 8, λ = 1.2, and t = 1. The unusual shape of the distribution for

smaller n demonstrates the piecewise nature of the density, apparent in the functional form

(4.7). Interestingly, Faller et al (2008) show that the distribution PD tends toward a normal

distribution as n→∞, a fact suggested by the shape of the distributions in Figure 4.2.

These distributions have some practical uses. First, one can predict the PD that will

arise under the Yule model from a collection of extant species up to time t in the future.

Second, we can calculate the probability that future PD at time t in one group is greater

than in the other, conditional on the number of species and diversification rates in both

groups; this probability may have uses in conservation applications. Third, conditional on

an inferred phylogenetic tree for a set of n taxa, one could compute the resulting PD x and
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Figure 4.2: Probability densities of phylogenetic diversity (PD), or total branch length, under

the Yule process starting at Y (0) = 1, ending at Y (t) = n for n = 1, . . . , 8, with t = 1 and

λ = 1.2. When n = 1, no births have occurred, so the accrued PD must be exactly x = t = 1,

which we represent here as a point mass at 1. For n = 2, the minimum accumulated PD is

one, since the process spent at most one unit of time with one species; likewise the maximum

accumulated PD is two, since the process spent at most one unit of time with two species.

The functional form of (4.7) reveals the piecewise nature of the density, which gradually

becomes smoother as n becomes large. The vertical probability axis is the same for all plots.
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perform a hypothesis test to evaluate the Yule-PD model using the quantity

Pr(PD > x) =

∫ nt

x

fY (x) dx (4.9)

where fY (x) is given by (4.8) and nt is the maximum PD that can accumulate in time t,

conditional on Y (t) = n.

4.4 The distribution of expected phenotypic variance

Since researchers generally do not know the phylogenetic tree for a set of species with cer-

tainty, PD is not observable until after a tree has been estimated. Unfortunately, the un-

certainty involved in estimating a tree propagates into subsequent estimates of PD based on

that tree, and our distributional results may no longer apply. We therefore seek a distri-

bution for an analogous quantity that is observable directly from knowledge of the number

of species n and their trait values, bypassing the need to infer a detailed phylogenetic tree.

For this, we will need a model for phenotypic trait evolution on the branches of an unknown

phylogenetic tree generated by a Yule process.

The simplest and most popular model for evolution of continuous phenotypic traits on

phylogenetic trees is Brownian motion (Felsenstein, 1985). Under this model, trait in-

crements over a branch of length t are normally distributed with mean 0 and variance

σ2t. The trait values for extant species at the present time are observed as the vector

X = (X1, . . . , Xn). For a given topology τ with n taxa and branching times t = (t2, . . . , tn−1),

with tip data X generated on the branches of this tree by zero-mean Brownian motion with

variance σ2, the tip data are distributed according to a multivariate normal random variable.

More formally,

X ∼ N
(
0, σ2C(τ, t)

)
, (4.10)

where the entries of the variance-covariance matrix C(τ, t) = {cij} are defined as follows:

cii = t, and cij is the time of shared ancestry for taxa i and j, where i 6= j. O’Meara et al

(2006) introduces disparity, the sample variance of the tip data X,

disparity(X) =
1

n
(X− X̄)′(X− X̄), (4.11)
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where X̄ is the mean of the elements of X. The expectation of the disparity, conditional on

the tree topology τ , branching times t, and the Brownian variance σ2, is

EX(disparity | τ, t, σ2) =
1

n
EX

(
(X− X̄)′(X− X̄) | τ, t, σ2

)

= σ2

[
tr
(
C(τ, t)

)

n
− 1

n2
1′C(τ, t)1

]

= σ2

[
t− 1

n2
1′C(τ, t)1

]

= σ2

[
t− 1

n2

(
nt+ 2

n∑

i=1

∑

j<i

cij

)]

= σ2

[(
1− 1

n

)
t− 2

n2

n∑

i=1

∑

j<i

cij

]
,

(4.12)

where we use the notation EX to indicate that the expectation is taken over realizations of

the Brownian process that generates X. The fourth line above arises since the matrix C(τ, t)

is symmetric and every element on the diagonal is t. However, every entry cij is either zero

or a branching time from the vector t, so the nonzero terms in the sum consist of branching

times tk. Let zk be the coefficient multiplying the branching time tk in the last line of (4.12).

Then we can express expected disparity as a weighted sum of the branching times,

EX(disparity | τ, t, σ2) = σ2

n∑

k=2

zktk. (4.13)

Figure 4.3 illustrates how tree topology determines the matrix C(τ, t) and expected disparity.

4.4.1 Expected disparity as an accumulated reward

The expected disparity (4.13) has features in common with PD, since it is a scalar quantity

that accumulates over the branches of the tree from time 0 to t. The difference is that

disparity implicitly incorporates tree-topological factors, which enter (4.13) as weights in

the sum of the branch lengths. In addition, a Yule tree accumulates PD even when there

is a single lineage, but the same is not true for disparity. We develop these ideas in greater

detail in this section.
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Figure 4.3: How tree topology determines the matrix of Brownian covariances and expected

disparity. At left, a tree topology τ of crown age t has 5 taxa and branch times t = (t2, t3, t4),

where tk is the time of the branch from k to k + 1 lineages. At right, the corresponding

matrix C(τ, t) of Brownian covariances. The diagonal entries of C(τ, t) are all t. The (i, j)th

entry of C(τ, t) is the time of shared ancestry between taxa i and j, for i 6= j. For example,

taxa 1 and 2 share ancestry for time t4. Expected disparity (using Brownian variance σ2) is

calculated using (4.12). Trait disparity cannot accumulate when there is only one species,

so we draw the tree τ beginning with two lineages at time 0.
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Our goal is to express (4.13) as a Markov reward process in a form equivalent to (4.4),

Rt = σ2

n∑

k=1

ak(tk − tk−1). (4.14)

From (4.12) we see that an = zn =
(
1− 1

n

)
, and an−1 can be found using an and zn−1, and

so on. We can formalize this recursive solution for the rewards by equating (4.13) and (4.14)

as follows:
n∑

k=2

zktk =
n∑

k=1

ak(tk − tk−1) = antn +
n−1∑

k=1

(ak − ak+1)tk. (4.15)

Then recursively solving for the ak’s gives a1 = 0 and

ak =
n∑

j=k

zj. (4.16)

for k = 2, . . . , n. Now defining Rt(a) to be the Yule reward process with rewards a =

(a1, . . . , an) under the topology τ , the expected disparity is distributed as

EX(disparity | τ, λ, σ2, n) ∼ σ2Rt(a). (4.17)

Note that we no longer need to condition on the branch lengths t = (t1, . . . , tn) in the

expected disparity – they have been “integrated out”. Therefore, to find the distribution of

expected trait variance under a Brownian motion process on a Yule tree with topology τ , we

need only find the relevant rewards a and compute the corresponding distribution of Rt(a).

As a concrete example, consider the five-taxon tree in Figure 4.3. The expected disparity,

given this topology τ and arbitrary branch lengths t = (t2, t3, t4), is

E(disparity|τ, t, σ2) = σ2

[
4

5
t− 4

25
t2 −

2

25
t3 −

2

25
t4

]
. (4.18)

The coefficients are given by

z =

(
− 4

25
, − 2

25
, − 2

25
,

4

5

)
. (4.19)

Solving for the rewards a, we obtain

a =

(
0,

12

25
,

16

25
,

18

25
,

4

5

)
(4.20)

which is easily verified by hand. This leads us to our second Theorem, which gives an

expression for the distribution of Rt(a).
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Theorem 2. In a Yule process with rate λ and arbitrary rewards a = (a1, . . . , an), the

Laplace transform of vmn(x, t|a) is given by

fmn(r, t) =





e−(mλ+amr)t m = n, and

λn−m
(n− 1)!

(m− 1)!

n∑

j=m

e−(jλ+ajr)t

∏
k 6=j
(
λ(k − j) + r(ak − aj)

) n > m.

(4.21)

The proof of this Theorem is given in Appendix 4.9. To obtain the probability distribution

of the accumulated reward, we must invert (4.21),

vmn(x, t) = L −1
[
fmn(r, t)

]
(x). (4.22)

For m = n and n = m + 1, there are simple expressions for the inverse Laplace transform.

Under certain conditions on the rewards a, there is a straightforward analytic inversion of

(4.21) for general n > m, but the rewards computed using the times of shared ancestry in

a phylogenetic tree do not always satisfy these conditions. Therefore, it is often easier to

numerically invert (4.21); we discuss this issue in much greater detail in Appendix 4.10, and

provide a straightforward method for numerical inversion of the Laplace transform (4.21)

based on the method popularized by Abate and Whitt (1995).

4.4.2 Approximate likelihood and inference for σ2

We now describe a statistical procedure for using Theorem 2 to perform statistical for the

unknown Brownian variance σ2. Suppose that in a clade of n species we have a crude

tree topology τ (without branch lengths). This topology could be derived from parsimony,

distance-based tree reconstruction methods, or one could simply use family/genus/species

information to assign a hierarchy of relationships and resolve polytomies randomly. Given the

tree topology τ , one can compute the rewards a. Suppose also that we have calculated trait

disparity for each of J independent continuous quantitative traits that arise from Brownian

motion on the branches of the unknown phylogenetic tree, starting at the root. Let

D(j)
n =

1

n

(
X(j) − X̄(j)

)′ (
X(j) − X̄(j)

)
, (4.23)
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be the observed disparity for the jth phenotypic trait, where X(j) is the vector of n trait

values for the jth phenotypic trait and X̄(j) is the mean of the elements of X(j). Then we

calculate the mean disparity D̄n across these J traits:

D̄n =
1

J

J∑

j=1

D(j)
n . (4.24)

Note that in order to find D̄n, we do not need the individual trait measurements themselves

– only the disparities. Then by the law of large numbers, D̄n → E(Dn) as J → ∞, where

Dn is the asymptotic mean disparity across all possible traits. Therefore, we approximate

the distribution of D̄n as follows:

D̄n ≈ E(Dn)

∼ EX(disparity | τ, σ2, λ, n, t)

= σ2Rt(a).

(4.25)

where a is the vector of rewards obtained from the topology τ . This approximate relation

provides the connection between observable mean trait disparity and the probability dis-

tribution in Theorem 2 that we need in order to compute the probability of the observed

disparities. Suppose the stem age of an unresolved tree is t, and let

fY (x) =
vmn(x|t, λ, a)

Pmn(t)
(4.26)

be the distribution of expected disparity in a Yule process with general rewards a, conditional

on Y (0) = m and Y (t) = n. Here, x is the expected trait disparity, which we approximate

by our observed (and therefore fixed) D̄n. From (4.25), we write

D̄n

σ2
∼ Rt(a) (4.27)

so the likelihood is approximately

fY (D̄n/σ
2). (4.28)

Finally, we propose the approximate maximum likelihood estimator

σ̂2 = argmax
σ2

fY (D̄n/σ
2). (4.29)
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To find σ̂2, note that in a Yule reward process in which ak < aj for k < j, the value of the

reward is constrained to lie in the interval

amt ≤ Rt(a) ≤ ant (4.30)

where we have assumed Y (0) = m and Y (t) = n. Additionally, when none of the rewards

ak are zero we are justified in dividing D̄n by the terms in (4.30) to obtain bounds on the

possible value of σ̂2 that maximizes (4.28),

D̄n

ant
≤ σ̂2 ≤ D̄n

amt
. (4.31)

When m = 1 and a1 = 0, the upper bound is infinity. However, in practice when m = 1 and

n ≥ 4, it is safe to assume that
D̄n

ant
≤ σ̂2 ≤ D̄n

a2t
. (4.32)

We solve (4.29) using the numerical Newton-Raphson method provided by the R function

nlm.

We emphasize that (4.29) is not a traditional maximum likelihood estimator. We have

approximated the distribution of D̄n by the distribution of expected disparity, giving an

approximate likelihood (4.28) that may not attain its maximum at the same value of σ2 as

the true likelihood. In addition, the density (4.28) is non-differentiable at several points, and

for n = m+ 1 attains its maximum at the lower boundary Rt(a) = amt (see Figure 4.2 with

m = 1, n = 2). These issues complicate application of traditional asymptotic theory for

maximum likelihood estimates, and the classical large sample theory may not apply because

the likelihood is only an approximation. One consequence of the violation of these traditional

assumptions is that we are unable to provide meaningful standard errors for σ̂2 using only

the approximate likelihood (4.28).

4.4.3 Simulations

To empirically evaluate the correctness of the analytic distributions we derived in Theorem

2, we simulated trait data via Brownian motion on trees generated by a Yule process with

age t = 1 and branching rate λ = 1. For n = 3, . . . , 8, we chose one tree topology and

108



0.0 0.5 1.0

n = 3

0.0 0.5 1.0

n = 4

0.0 0.5 1.0

n = 5

0.0 0.5 1.0

n = 6

0.0 0.5 1.0

n = 7

0.0 0.5 1.0

n = 8

Figure 4.4: Empirical correspondence between the derived expressions for the distribution of

expected disparity and simulated mean disparity histograms for trees with different numbers

of taxa. For each n = 3, . . . , 8, we simulated a single tree topology (shown above each

histogram in gray). We then simulated 2000 sets of branch lengths for this topology under

the Yule process. For each set of branch lengths, we calculated the mean disparity from 2000

simulations of zero-mean Brownian motion with variance σ2 = 1 on this tree.

simulated Nbtimes = 2000 sets of branch lengths from a Yule process for n species (Stadler,

2011). For each set of branching times, we simulated NBM = 2000 realizations of Brownian

motion with σ2 = 1 to generate trait values at the tips of the tree (Paradis et al, 2004). For

each of the 2000 sets of tip values, we calculated the mean disparity using (4.12). Figure

4.4 shows histograms of the mean disparities with the analytic distribution fY (x) overlaid,

with good correspondence. The tree topology (with arbitrary branch lengths for display) is

shown in gray above each histogram.

To evaluate our estimation methodology, we take a similar approach, but for each simu-

lated set of mean disparities, we infer σ̂2, an approximate maximum likelihood estimate of

109



σ2. Figure 4.5 shows estimates of σ2 for different species richness n under different simulation

conditions. For n = 3, . . . , 12, we generated 100 trees, each with Nbtimes = 1, 5, 10, 100 sets

of branching times. For each set of branching times, we evolved NBM = 1, 5, 10, 100 traits

by Brownian motion along the branches with rate σ2 = 1 and computed the mean disparity.

Then, given the Nbtimes mean disparities, we maximized the approximate likelihood to find

σ̂2. Each dot in Figure 4.5 represents one estimate, and the dots are jittered slightly to

show their density. The variance in the estimator is large when the number of simulated

branching time sets and Brownian realizations is small since (4.25) and hence (4.27) become

poor approximations to the mean disparity. However, the approximate maximum likelihood

estimator for σ2 appears to have the desirable property of statistical consistency: the devia-

tion of the estimates from the true value σ2 = 1 goes to zero as the number of mean disparity

observations becomes large.

4.5 Application to evolution of body size in the order Carnivora

To illustrate the usefulness of our method in practical comparative inference, we estimate

thirteen family-wise Brownian variance rates for body size evolution in the mammalian order

Carnivora using observed log-body size disparities and species richness information (Gittle-

man, 1986; Gittleman and Purvis, 1998; Slater et al, 2012). Carnivora includes members

with very large and small body masses, including wide diversity within individual families

(Nowak and Paradiso, 1999). We included only families with 2 or more species, since fam-

ilies with only one species do not reveal useful information about intra-family Brownian

variance. The dataset, comprising 284 species, included the families Canidae, Eupleridae,

Felidae, Herpestidae, Hyaenidae, Mephitidae, Mustelidae, Otariidae, Phocidae, Prionodonti-

dae, Procyonidae, Ursidae, and Viverridae. Figure 4.6 shows the backbone phylogeny (from

Eizirik et al (2010)) and the unresolved clades. Our analysis takes advantage of utilities

for manipulating trees and quantitative trait data in the ape package (described in Paradis

et al (2004)) and simulating trees with the TreeSim package (described in Stadler (2011)),

using the statistical programming language R (CRAN, 2012). We intentionally limit our
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Figure 4.5: Empirical consistency of approximate maximum likelihood estimates of σ2. The

number of species n in the unobserved phylogenetic tree is shown on the horizontal axis. Each

set of plots shows 100 estimates of σ2 from Nbtimes simulations of different branching times

under a Yule process with n species and from NBM independent realizations of Brownian

motion used to compute the mean disparity for each set of branching times. The estimates

are jittered to show the sampling distribution. The gray dotted line shows the true value

σ2 = 1.
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analysis to the Brownian variance in each family and use only body size disparity in order to

demonstrate the simplicity of our approximate method under conditions of very little data.

The first step is to estimate the speciation rate λ from the backbone tree and the unre-

solved clades. Even though the tree is unobserved within each family, we can still find the

exact maximum likelihood estimate of λ for the tree as a whole. On a fully resolved branch

of length t, the log-likelihood of λ is log(λ) − λt. For an unresolved clade of age t with

one species at the crown which grows to include n species, the log-likelihood from (4.2) is

proportional to −λt + (n− 1) log(1− e−λt). Summing these partial log-likelihoods over the

whole tree gives the log-likelihood for λ; maximizing this function, we find that λ̂ = 0.069

per million years. In what follows, we assume that λ = λ̂. To each unresolved family clade

we associate the clade disparity for body size. Our analysis will consist of estimating the

family-wise Brownian variance σ2
j for the jth family, assuming one species at the stem age

for each clade shown in Figure 4.6. In this way, we integrate over crown ages for each family

under the Yule model. To apply the methodology for modeling expected trait disparity de-

veloped in section 4.4, we regard the unresolved clades as “soft polytomies” in which branch

lengths are unknown (Purvis and Garland, 1993). We therefore resolve these polytomies

randomly without assigning branch lengths.

Our analysis of the Carnivora family-wise Brownian variances takes approximately 30

seconds to run on a laptop computer. However, to evaluate the variability in our estimates,

we ran the analysis 100 times with randomly resolved polytomies for each family. Table

4.1 shows the family name, species richness (n), stem age (t), observed body size disparity

(D̄n), the mean estimate of σ2
j , and the approximate standard error of the estimate for

each family. We calculated standard errors as the empirical standard deviation of the 100

Brownian variance estimates. Our estimates of σ2 reveal readily interpretable information

about the evolution of body size in each family that is not available directly from observed

disparities alone. For example, the families Herpestidae and Viverridae have almost identical

species richness, but quite different disparity measurements. Perhaps surprisingly, we have

estimated nearly equal Brownian variances for the two families. Why does our method

produce such similar estimates of σ2? The answer lies in the ages of the clades – Viverridae
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Prionodontidae

Felidae

Viverridae

Herpestidae

Eupleridae
Hyaenidae

Canidae

Ursidae

Otariidae

Phocidae

Mephitidae

Mustelidae

Procyonidae

20.6

5.3

33.3

33.3

1.2

37.4

5.2
6.7

25.5

25.5
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32
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27.4
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Figure 4.6: A family-level phylogenetic tree for order Carnivora. The phylogeny within each

family, shown here as a gray triangle, is not known with certainty. The length of the base

of the gray triangles represents the number of species in the family. The “backbone” tree

connecting the unresolved clades is assumed fixed. Branch lengths are shown along each

branch.
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Family Richness TMRCA Disparity σ̂2 SE

Prionodontidae 2 33.30 0.131 0.051 0

Felidae 40 33.30 1.588 0.118 0.094

Viverridae 34 37.40 0.606 0.034 0.018

Herpestidae 33 25.50 0.482 0.035 0.017

Eupleridae 8 25.50 0.916 0.081 0.010

Hyaenidae 4 32.20 0.805 0.084 0.001

Canidae 35 48.90 0.678 0.031 0.012

Ursidae 8 42.60 0.303 0.025 0.002

Otariidae 16 24.50 0.386 0.029 0.005

Phocidae 19 24.50 0.751 0.065 0.030

Mephitidae 12 32.00 0.570 0.038 0.004

Mustelidae 59 27.40 2.263 0.220 0.239

Procyonidae 14 27.40 0.531 0.038 0.006

Table 4.1: Species richness, TMRCA, body size disparity, and estimated Brownian variance

σ̂2 for each family in the Carnivora dataset. Note that Canidae and Herpestidae have very

different disparity measurements, but nearly identical estimates of σ2. This discrepancy is

due to the difference in their ages; we explain the interaction between time, species number

and disparity in greater detail in the text.

is almost 50% older than Herpestidae. Two clades with the same richness whose traits evolve

by Brownian motion at the same rate can exhibit very different disparity measurements,

depending on their ages. This example illustrates how our method provides an approximate

way to untangle the complex interaction of time, species, and observed trait variance (in the

words of Ricklefs (2006)) for unresolved clades.
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4.6 Discussion: Comparative phylogenetics without trees?

In this paper we have outlined a method for integrating over Yule trees. We presented an

expression for the distribution of PD in an unresolved tree, conditional on the number of

species n and age t. We showed that the expected disparity can be represented in a similar

way as PD, since it accumulates along the branches of a phylogenetic tree. We also derived

a statistical framework that uses a very small amount of information (n, t, and D̄n) for

an unresolved clade to derive a meaningful estimator for the Brownian rate σ2. It may

seem counterintuitive that one can estimate the Brownian rate for an unresolved tree with

n taxa, given a single disparity measurement. However, the structure provided by the Yule

process allows this inference by providing just enough information about the distribution

of branching times that generate the tree to model the average phenotypic disparity under

Brownian motion. This permits analytic integration over two random objects: the collection

of branching times of the tree and realizations of Brownian motion. Three assumptions make

this possible: first, we fix a topology τ without branch lengths; second, we assume that

branch lengths come from a Yule process; third, we compute the distribution of expected

disparity, which is a scalar quantity that encapsulates the most important information in

the covariance matrix C(τ). In exchange for these assumptions, we gain what frustrated

reviewers of Felsenstein’s paper apparently wished for: an estimator that “obviate[s] the need

to have an accurate knowledge of phylogeny” (Felsenstein, 1985). Whether these assumptions

are warranted depends fundamentally on the scientific questions at hand, and the available

data.

Perhaps the most satisfying use of our method is in providing an approximate and model-

based answer to the questions posed by Ricklefs (2006) and Bokma (2010), in their similarly-

named papers. Our answer is approximate because it substitutes an observation for an

expectation in (4.25); it is model-based because we assume that trees arise from a Yule

process and traits evolve Brownian motion. Equation (4.25) expresses a heuristic relationship

explaining the origins of phenotypic disparity, which we reproduce here for emphasis:

D̄n ∼ σ2Rt(a). (4.33)
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On the left-hand side is the observed disparity. On the right-hand side, Rt(a) serves as a

scalar summary of tree shape – it depends only on n, clade age t, and tree topology τ . This

reveals that even when we restrict our attention to expected disparity under the simplest

evolutionary models, the interaction between n, t and the branching structure of the tree in

Rt(a) is complex, but the Brownian variance simply scales the tree-topological term. We see

that D̄n scales linearly with σ2 when n, t, and the topology τ are fixed. However, changing

one of n, t, or τ while holding σ2 constant will induce a nonlinear change in D̄n. We conclude

that it is not possible to partition the time-dependent and speciation-dependent influences

on the accumulation of trait variance in a simple way as suggested by Ricklefs (2006) under

the stochastic models we study in this paper.

As an inducement to spur research on analytic integration over trees, Bokma (2010)

offers a monetary reward for an expression for the distribution of sample variance from a

birth-death tree with Brownian trait evolution on its branches. We have solved a simpler

version of Bokma’s challenge by providing the distribution of expected trait variance for a

specific topology under a pure-birth process. The expression Bokma (2010) seeks is diffi-

cult to find for two reasons: first, it would require analytic integration over discrete tree

topologies; second, and more intuitively, integrating over both topologies and Brownian re-

alizations would subsume the Brownian variance σ2 on the right-hand side of (4.25) into

a nonlinear term that depended on n, t, and σ2 in a very complicated way. Alternatively,

simulation-based approaches provide an appealing alternative method to integrate over trees

and Brownian motions without requiring approximation of the disparity by its expectation.

Indeed, Bayesian methods exist to sample from the distribution of Yule trees, conditional

on observed trait values at the tips, thereby providing both estimates of Brownian rates and

phylogenies simultaneously, while using all the available trait data (Drummond et al, 2012).

Tree-free comparative evolutionary biology comes at a price – there are several important

drawbacks to our approach. First, even under the Yule model for speciation (with the

correctly specified branching rate λ) and zero-mean Brownian motion for traits, integrating

over all possible Yule trees introduces great uncertainty in estimates of σ2. Figure 4.5

illustrates this issue: while the estimates of σ2 eventually converge to the true value as the
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number of branch length and trait realizations becomes large, the variance in these estimates

can be substantial for smaller datasets. Furthermore, the assumption that D̄n ∼ σ2Rt(a)

may be suspect if the number of traits analyzed is small enough that the mean trait disparity

is a poor substitute for the expected disparity.

We conclude with a mixed message about analytic integration over trees. First, it is

possible to derive meaningful estimators for parameters of interest under simple evolutionary

models, if one is willing to make assumptions about the mean behavior of the models. The

estimates are usually reasonable, and may provide valuable insight into the basic properties

of evolutionary change under these models – even our simplistic analysis of Carnivora body

size evolution reveals the complex interaction of clade age, species number, and evolutionary

rate. These estimates may be useful as starting points for more time-consuming simulation

analyses. Second, and more pessimistically, sophisticated analytic methods for integrating

over trees cannot conjure evolutionary information from the data that is not there already.

As evolutionary biologists further refine our knowledge of the tree of life, the number of clades

whose phylogeny is truly unknown may diminish, along with interest in tree-free estimation

methods.

4.7 Appendix: Markov rewards for Yule processes

In this Appendix, we prove one lemma and the two Theorems presented in the text. In the

first proof, we derive a representation of the forward equation for a Yule reward process.

Our development follows that given by Neuts (1995).

Lemma 1. In a Yule reward process Rt =
∫ t

0
aY (s) ds with arbitrary positive rewards

a1, a2, . . ., the Laplace-transformed reward probabilities satisfy the ordinary differential equa-

tions
dfmn(r, t)

dt
= −(nλ+ anr)fmn(r, t) + (n− 1)λfm,n−1(r, t). (4.34)

Proof. Let Vmn(x, t) = Pr(Rt ≤ x, Y (t) = n | Y (0) = m). We can re-write this quantity in a

more useful form by conditioning on the time of departure u from state m, noting that the
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accumulated reward is amu, and then integrating over u. If m = n and no departure occurs,

the accumulated reward is amt. Putting these ideas together, we obtain

Vmn(x, t) = Pr(Rt ≤ x, Y (s) = m for 0 ≤ s ≤ t)

+

∫ t

0

Pr(m→ m+ 1 at time u)Vm+1,n(x− amu, t− u) du

= δmne
−mλtH(x− amt) +

∫ t

0

mλe−mλuVm+1,n(x− amu, t− u) du.

(4.35)

Now consider the Laplace transform Fmn(r, t) of Vmn(x, t), with respect to the reward variable

x,

Fmn(r, t) = L
[
Vmn(x, t)

]
(r)

=

∫ ∞

0

e−rxVmn(x, t) dx

= δmn
e−(mλ+amr)t

r
+

∫ t

0

mλe−mλu
∫ ∞

amu

e−rxVm+1,n(x− amu, t− u) dx du.

(4.36)

Making the substitution y = x− amu in the Laplace integral, we have

Fmn(s, t) = δmn
e−(mλ+amr)t

r
+

∫ t

0

mλe−mλu
∫ ∞

0

e−r(y+amu)Vm+1,n(y, t− u) dy du

= δmn
e−(mλ+amr)t

r
+

∫ t

0

mλe−(mλ+amr)uFm+1,n(r, t− u) du.

(4.37)

Now multiplying both sides by e(mλ+amr)t and differentiating with respect to t, we obtain

∂

∂t

[
e(mλ+amr)tFmn(r, t)

]
=

∂

∂t

∫ t

0

mλe(mλ+amr)(t−u)Fm+1,n(r, t− u) du

=
∂

∂t

∫ t

0

mλe(mλ+amr)uFm+1,n(r, u) du.

(4.38)

Expanding the left-hand side by the product rule and using the fundamental theorem of

calculus on the right, we find that

e(mλ+amr)t

(
(mλ+ amr)Fmn(r, t) +

∂

∂t
Fmn(r, t)

)
= e(mλ+amr)tmλFm+1,n(r, t). (4.39)

Cancelling common factors and rearranging, we obtain the Kolmogorov backward equation,

∂

∂t
Fmn(r, t) = −(mλ+ amr)Fmn(r, t) +mλFm+1,n(r, t). (4.40)
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However,

rFmn(r, t) = L

[
∂

∂x
Vmn(x, t)

]
(r) = L

[
vmn(x, t)

]
(r) = fmn(r, t). (4.41)

Plugging rFmn(r, t) = fmn(r, t) into (4.40), we find that the fmn(r, t) satisfy the same system

of ordinary differential equations,

∂

∂t
fmn(r, t) = −(mλ+ amr)fmn(r, t) +mλfm+1,n(r, t). (4.42)

These are the backward equations for the Laplace transformed reward process. To solve

(4.42), we note that any solution to the forward equations is a solution to the backward

equations in a birth process (Grimmett and Stirzaker, 2001). Therefore, (4.42) is equivalent

to the forward system

∂fmn(r, t)

∂t
= −(nλ+ anr)fmn(r, t) + (n− 1)λfm,n−1(r, t) (4.43)

for n = m,m+ 1,m+ 2, . . . This completes the proof.

4.8 Appendix: Proof of Theorem 1

Proof. Lemma 1 with ak = k for k = 0, 1, . . . gives

∂fmn(r, t)

∂t
= −n(λ+ r)fmn(r, t) + (n− 1)λfm,n−1(r, t). (4.44)

Define gmn(r, s) to be the Laplace transform of fmn(r, t) with respect to the time variable t.

Transforming (4.44) gives

sgmn(r, s)− δmn = −n(λ+ r)gmn(r, s) + (n− 1)λgm,n−1(r, s). (4.45)

Letting m = n, we find that

gmm(r, s) =
1

s+m(λ+ r)
. (4.46)

Next, we form a recurrence and solve for gmn(r, s) to obtain

gmn(r, s) =
(n− 1)λ

s+ n(λ+ r)
gm,n−1(r, s)

=
(n− 1) · · ·mλn−m∏n
j=m+1

[
s+ j(λ+ r)

]gm,m+1(r, s)

=
(n− 1)!

(m− 1)!

λn−m∏n
j=m

[
s+ j(λ+ r)

] .

(4.47)
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We proceed via a partial fractions decomposition of the product in the denominator above,

gmn(r, s) = λn−m
(n− 1)!

(m− 1)!

n∑

j=m

(∏

k 6=j

(λ+ r)(k − j)
)−1

1

s+ j(λ+ r)

=
(n− 1)!

(m− 1)!
λn−m

n∑

j=m

[(∏j−1
k=m(k − j)

)(∏n
k=j+1(k − j)

)]−1

(λ+ r)n−m
1

s+ j(λ+ r)

=
(n− 1)!

(m− 1)!
λn−m

n∑

j=m

[(−1)j−m(j −m)!(n− j)!]−1

(λ+ r)n−m
1

s+ j(λ+ r)

= λn−m
n∑

j=m

(
n− 1

j − 1

)(
j − 1

m− 1

)
(−1)j−m

(λ+ r)n−m
1

s+ j(λ+ r)
.

(4.48)

when n > m. Inverse transforming with respect to s, we obtain

fmm(r, t) = e−m(λ+r)t (4.49)

and

fmn(r, t) = λn−m
n∑

j=m

(
n− 1

j − 1

)(
j − 1

m− 1

)
(−1)j−m

(λ+ r)n−m
e−j(λ+r)t (4.50)

when n > m. Again inverse transforming (4.50), this time with respect to the Laplace reward

variable r, we find that for m = n,

vmm(x, t) = δ(x−mt)e−mλt (4.51)

which is a point mass at x = mt. For n > m,

vmn(x, t) =
λn−me−λx

(n−m− 1)!

n∑

j=m

(
n− 1

j − 1

)(
j − 1

m− 1

)
(−1)j−m(x− jt)n−m−1H(x− jt). (4.52)

This completes the proof.

4.9 Appendix: Proof of Theorem 2

Proof. Lemma 1 with arbitrary rewards ak, k = 1, 2, . . ., gives

dfmn(r, t)

dt
= −(nλ+ anr)fmn(r, t) + (n− 1)λfm,n−1(r, t). (4.53)
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To solve the system, apply the Laplace transform with respect to time t. First note that the

transform of fmm(r, t) is

gmm(r, s) =
1

s+mλ+ amr
. (4.54)

Transforming the nth equation, and recalling that fmn(r, 0) = 0 for n > m,

sgmn(r, s)− fmn(r, 0) = −(nλ+ anr)gmn(r, s) + (n− 1)λgm,n−1(r, s)

gmn(r, s)(s+ nλ+ anr) = (n− 1)λgm,n−1(r, s)

gmn(r, s) =
(n− 1)λ

s+ nλ+ anr
gm,n−1(r, s)

=
(n− 1)!

(m− 1)!

λn−m∏n
j=m+1(s+ jλ+ ajr)

gmm(r, s)

=
(n− 1)!

(m− 1)!

λn−m∏n
j=m(s+ jλ+ ajr)

.

(4.55)

We expand the denominator by partial fractions to find

gmn(r, s) = λn−m
(n− 1)!

(m− 1)!

n∑

j=m

∏
k 6=j
[
λ(k − j) + r(ak − aj)

]−1

s+ jλ+ ajr
. (4.56)

Transforming back to the time domain, we have, for m = n,

fmm(r, t) = e−(mλ+amr)t. (4.57)

When n > m,

fmn(r, t) = λn−m
(n− 1)!

(m− 1)!

n∑

j=m

e−(jλ+ajr)t

∏
k 6=j
(
λ(k − j) + r(ak − aj)

) . (4.58)

This completes the proof.

4.10 Appendix: Analytic and numerical inversion

Analytic inversion of (4.21) in Theorem 2 is possible, but unfortunately depends on the

structure of the tree topology in unexpected ways. One convenient property of the rewards

a = (a1, . . . , an) is that ai < ai+1 for all 1 ≤ i ≤ n−1, a fact apparent from (4.12). Therefore

ai 6= aj for distinct i and j. When m = n, no speciation events have taken place, and we

have

vmm(x, t) = δ(x− amt)e−mλt. (4.59)

121



For n = m+ 1, there is only one distinct topology, so

vm,m+1(x, t) =
mλe−mλt

am+1 − am

[
exp

(
−λ(x− amt)
am+1 − am

)
H(x− amt)

− eλt exp

(
−λ(x− am+1t)

am+1 − am

)
H(x− am+1t)

]
.

(4.60)

In general, when
`− j
a` − aj

− k − j
ak − aj

6= 0 (4.61)

for any l, k, or j in 1, . . . , n, then (4.58) becomes

fmn(r, t) = λn−m
(n− 1)!

(m− 1)!

n∑

j=m

e−(jλ+ajr)t

∏
k 6=j(ak − aj)

(
λ(k−j)
ak−aj

+ r
)

= λn−m
(n− 1)!

(m− 1)!

n∑

j=m

e−(jλ+ajr)t

∏
k 6=j(ak − aj)

∑

k 6=j

∏
`6=k
`6=j

(
λ(`−j)
a`−aj

− λ(k−j)
ak−aj

)−1

λ(k−j)
ak−aj

+ r
,

(4.62)

and so the full probability density for n > m is

vmn(x, t) = λ2 (n− 1)!

(m− 1)!

n∑

j=m

e−jλtH(x− ajt)∏
k 6=j(ak − aj)

∑

k 6=j

exp
[
−λ(k−j)

ak−aj
(x− ajt)

]

∏
`6=k
`6=j

(
`−j
a`−aj

− k−j
ak−aj

) (4.63)

However, the rewards a for many topologies do not satisfy (4.61). This can be seen in Figure

4.7, where m = 2 and n = 4. Then we see that when j = 2, k = 4, and ` = 3 in (4.63),

4− 2

a4 − a2

=
4− 2

0.75− 0.5
= 8 (4.64)

and
3− 2

a3 − a2

=
3− 2

0.75− 0.625
= 8, (4.65)

so the denominator in the second sum in (4.63) is zero. Unfortunately this happens whenever

there is symmetry in the tree so that more than one pair of taxa have the same time of shared

ancestry. Note also that (4.63) does not reduce to (4.21) in Theorem 2 when ak = k since

the denominator in the summand of (4.63) is zero.

Despite the difficulty in writing a general inversion to obtain fmn(x, t) for any topology,

numerical inversion to arbitrary precision remains straightforward. Abate and Whitt (1995)
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Figure 4.7: Demonstration of a problematic reward vector a computed for the symmetric

four-taxon tree. In this case, the analytic inversion formula (4.63) cannot be applied, since

the denominator in the sum becomes zero.

describe a numerical method for inverting the Laplace transform of probability densities by

a discrete Riemann sum using the trapezoidal rule with step size h:

vmn(x, t) ≈ eA/2

2x
Re

[
fm,n

(
A

2x
, t

)]
+
eA/2

x

∞∑

k=1

(−1)kRe

[
fm,n

(
A+ 2kπi

2x
, t

)]
, (4.66)

where we choose A = 20.
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CHAPTER 5

Sex, lies, and self-reported counts: Bayesian analysis of

longitudinal heaped integer data

Respondents to surveys are often asked to report numeric quantities, and sometimes they

do not report those numbers acurrately. They may round up or down to the nearest integer,

decimal place, or multiple of 5 or 10. This phenomenon is called grouping, heaping, coarsen-

ing, or digit preference, and the error inherent in these self-reported numbers can seriously

bias estimation. Heaping is a well-known problem in many survey settings, and inference

for heaped data is a major unsolved problem in statistical inference for both continuous

quantities and counts. Heaping models often must make use of covariates or longitudinal

sampling, which complicates the inference task substantially. We present a mixture model

characterization of heaping: each subject i draws his or her true count Xi from a common

distribution F , and then reports the possibly different value Yi|Xi according to a reporting

distribution G(Xi). We describe a novel parameterization of the reporting distribution whose

parameters are readily interpretable as rates of over- and under-reporting and rounding to

multiples of 5 or 10 by characterizing G using a general birth-death process. We present a

Bayesian hierarchical model for longitudinal samples with covariates to infer both the un-

observed true distribution of counts and the parameters that underly the heaping process.

Finally, we apply our methods to longitudinal self-reported counts of sex acts in a study of

high-risk behavior in HIV-positive youth.
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5.1 Introduction

When survey respondents report numeric quantities, they often recall those numbers with

error. In addition, respondents sometimes round up or down, for example to the nearest

integer, decimal place, or multiple of 5 or 10. Several competing terms describe these errors.

Grouped observations can only be resolved up to an interval that contains the true value;

rounding to the nearest integer is an example of grouping. In a generalization of this concept,

coarsened data can be resolved only up to a subset of the sample space (Heitjan and Rubin,

1991). Heaped data arise when there are various levels of coarsening. Heaping is a well-known

problem in many survey settings, and robust inference for heaped data is a major unsolved

problem in statistical inference for both continuous quantities and counts (Heitjan, 1989;

Wang and Heitjan, 2008; Wright and Bray, 2003; Crockett and Crockett, 2006; Schneeweiss

et al, 2010).

Reporting errors are well-studied for a variety of quantities, including self-reported age

(Myers, 1954; Stockwell and Wicks, 1974; Myers, 1976); height and weight (Rowland, 1990;

Schneeweiss and Komlos, 2009); elapsed time (Huttenlocher et al, 1990); and household

purchases (Browning et al, 2003). Respondents may be even more inclined to misreport

when the survey addresses topics that seem private, embarrassing, or culturally taboo. For

example, there may be significant misreporting in studies of drug use (Klovdahl et al, 1994;

Roberts and Brewer, 2001); cigarette use (Brown et al, 1998; Wang and Heitjan, 2008); or

number of sex acts or sexual partners (Westoff, 1974; Golubjatnikov et al, 1983; Wiederman,

1997; Weinhardt et al, 1998; Fenton et al, 2001; Ghosh and Tu, 2009). Roberts and Brewer

(2001) outline possible explanations and cognitive procedures that might give rise to heaping

in self-reported data, including simple recall error, digit preference (e.g. counts ending in

0 or 5), or computing an approximate rate of an event and multiplying by time to obtain

a count. Sometimes reporting errors arise though other mechanisms. For example, surveys

that seek the number of lifetime sexual partners may induce respondents to misreport if they

regard their true count as being embarrassingly high or low.

In practice, when errors due to inaccurate recall or reporting bias are a problem, the
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researchers conducting a survey can use a variety of techniques to increase the accuracy

of reports, including combinations of written questionnaires, in-person and telephone inter-

views, and continuous self-monitoring (Weinhardt et al, 1998). However, since researchers

are limited by time and funds, no survey methodology can guarantee error-free results. This

means that substantial inaccuracies may remain in self-reported data, and there is a clear

need for statistical methodology that can assist researchers in learning from data that contain

reporting errors.

Several authors have proposed statistical techniques to correct variance estimates un-

der heaping of continuous or count data (Sheppard, 1897; Schneeweiss and Komlos, 2009;

Schneeweiss et al, 2010; Schneeweiss and Augustin, 2006), and approximations and correc-

tions to the maximum likelihood equations for estimation using grouped data (Tallis, 1967;

Lindley, 1950). Others have explored smoothing techniques for heaped data on the grounds

that smoothing may have the effect of “spreading out” grouped responses (Hobson, 1976;

Singh et al, 1994). Roberts and Brewer (2001) discuss tests for detecting heaping in discrete

distributions.

Notably, Heitjan (1989) provides a comprehensive review of previous inference strategies

for grouped continuous data. Heitjan and Rubin (1991) introduce the concept of coarsening,

in which we observe only a subset of the complete data sample space. They outline an

integral representation of the likelihood for coarsened data that is useful in a variety of

applied scenarios. Heitjan and Rubin (1990) apply these ideas to age heaping using a data

imputation technique, and Wang and Heitjan (2008) study the impact of a drug treatment

on smoking, where counts of cigarettes are heaped. Jacobsen and Keiding (1995) discuss

extensions of the concept of coarse data to more general sample spaces than those considered

by Heitjan and Rubin (1991). In another useful development, Wright and Bray (2003)

interpret a dataset of reported (and evidently heaped) nuchal translucency measurements

explicitly as samples from a mixture model. They propose a Gibbs sampling scheme to draw

from the joint distribution of the true counts and unknown rounding parameters.

Many of these approaches make use of the mixture model paradigm, which provides a

convenient framework for attacking heaping problems. To make this clear in the context of
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heaping in count data, suppose respondents to a survey are asked to report a non-negative

integer quantity. We imagine the reporting process as follows: respondent i draws his or

her true count Xi from a distribution F (φ) taking values on the non-negative integers.

The respondent then reports the possibly different value Yi|Xi from a reporting distribution

G(Xi,θ), which depends on the true count Xi. Here, θ is a vector of parameters underlying

the heaping distribution G. In this way, we can interpret the reported count Yi as a mixture

of possibly different counts, where F determines the mixing proportions. The likelihood

contribution of an observed count y becomes

L(θ,φ; y) =

∫

N
g(y|x,θ) dF (x;φ)

=
∞∑

x=0

g(y|x,θ) f(x|φ)
(5.1)

where g(y|x,θ) is the probability mass function (PMF) of y given x and θ, and f(x|φ) is the

PMF of F . The quantities of greatest interest are often the true counts Xi or the parameters

φ underlying the true count distribution F (φ). The mixture model paradigm provides the

tools we need to attack this problem. The distribution of Yi given F (φ) can be regarded as

a mixture of distributions G(Xi,θ), where F determines the mixing proportions. Figure 5.1

shows two graphical representations of this mixture model for heaped counts.

Applied researchers often have significant insight into the general properties or shape of

G(Xi,θ) through methodological research into reducing error in survey sampling; see, for

example, Weinhardt et al (1998) and Fenton et al (2001). These heuristic descriptions of

reporting error for specific survey questions can guide statisticians in constructing rigorous

probability models that capture important subjective qualities of heaping behavior. Perhaps

surprisingly, a useful way to parameterize the reporting distribution G(Xi,θ) is to imagine

that the true count Xi is the starting point of a continuous-time Markov chain on the non-

negative integers known as a general birth-death process (BDP). Jumps from state x to

x + 1 or x − 1 occur with instantaneous rates λx and µx, respectively. We specify µ0 = 0

to keep the process on the non-negative integers. Grunwald et al (2011) and Lee and Weiss

(2011) model under- and over-dispersion in count data using a limited linear BDP with

λx = λx and µx = µx, but do not explicitly address heaping. In addition to modeling
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Figure 5.1: Two equivalent representations of the mixture model for heaped count data. The

top panel shows a schematic diagram of the idealized reporting process: subject i chooses

his or her true count Xi from the distribution F , then reports the possibly different count Yi,

drawn from the distribution G(Xi,θ). The bottom panel shows a graphical representation

of the same process.
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over-dispersion, BDPs can be very useful in parameterizing families of probability measures

on the non-negative integers (Klar et al, 2010).

In this paper, we present an innovative framework for analyzing heaped longitudinal count

data with covariates using a Bayesian hierarchical model and a novel characterization of the

reporting distribution. In section 5.2 we describe a flexible class of reporting distributions

that arise naturally from a carefully specified BDP: We model Yi|Xi as the state of a BDP

after a short deterministic time t. By giving the jumping rates a certain parametric form, we

develop a family of distributions G(Xi,θ) which are equivalent to the transition probability

distributions of the BDP. Next, in section 5.3, we outline a Bayesian hierarchical model for

longitudinal counts and a Gibbs-Metropolis scheme for sampling from the joint posterior

distribution of the unknown parameters. We are interested in learning about the parameters

φ underlying the true counts, the inferred true counts Xi themselves, and the parameters

θ that govern the reporting/heaping process. Finally, in section 5.4, we demonstrate our

method on longitudinal self-reported counts of sexual acts obtained during a study on the

behaviors of HIV-positive youth.

5.2 Parameterizing the reporting distributions

In our formulation, G represents a family of reporting distributions indexed by the true

count X. To parameterize G(X,θ) so that heaping can occur, we let Y |X represent the

outcome of an unbounded continuous-time Markov random walk, taking values on the non-

negative integers, starting at the true count X, and evolving for a finite arbitrary time.

The general BDP is a well-studied stochastic process that we can adapt to produce just

such a family of reporting distributions by computing its finite-time transition probabilities

Pr(Y = y|X,θ) of this process, which determine the reporting distribution G. We specify

the jumping rates of the BDP in a novel way so that the process is attracted to states

on which heaping is expected to occur. One of the benefits of this approach is that we

need only three parameters to define an infinite family of reporting distributions for heaped

count data. We first present some background on the general BDP and show how to obtain
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transition probabilities through a continued fraction expansion of the Laplace transform of

the transition probabilities of the process.

5.2.1 General birth-death processes

A general BDP is a continuous-time Markov random walk on the non-negative integers

(Feller, 1971). LetX(t) be the location of the walk at time t. Define the transition probability

Pab(t) = Pr(X(t) = b | X(0) = a) to be the probability that the process is in state b at time

t, given that it started at state a at time 0. A general BDP obeys the Kolmogorov forward

equations
dPab(t)

dt
= λb−1Pa,b−1(t) + µb+1Pa,b+1(t)− (λb + µb)Pab(t) (5.2)

where Pab(0) = 1 if a = b and zero otherwise, and we specify µ0 = λ−1 = 0. The forward

equations are an infinite sequence of ordinary differential equations describing the probability

flow into and out of state b at time t. Karlin and McGregor (1957b) provide a detailed

derivation of properties of general BDPs. Unfortunately, it remains notoriously difficult to

find analytic expressions for the transition probabilities in almost all general BDPs, and

often one must resort to numerical techniques (Novozhilov et al, 2006; Renshaw, 2011).

A useful method for finding the transition probabilities Pab(t) is to apply the Laplace

transform to both sides of the forward equations (5.2). This has the effect of turning the

infinite system of differential equations into a recurrence relation, which can be solved to

give a single expression for the Laplace transform of the transition probability. To illustrate,

denote the Laplace transform of the transition probability Pab(t) as

hab(s) =

∫ ∞

0

e−stPab(t) dt. (5.3)

Then (5.2) becomes

sh00(s)− P00(0) = µ1h01(s)− λ0h00(s), and

sh0b(s)− P0,b(0) = λb−1h0,b−1(s) + µb+1h0,b+1(s)− (λb + µb)h0b(s)
(5.4)

for b ≥ 1. Rearranging (5.4) and forming a recurrence, we find a continued fraction repre-
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sentation for h00(s),

h00(s) =
1

s+ λ0 −
λ0µ1

s+ λ1 + µ1 −
λ1µ2

s+ λ2 + µ2 − · · ·

. (5.5)

This is the Laplace transform of the transition probability P00(t). From this equation, it

is possible to derive similar continued fraction representations for hab(s), for any X(0) = a

and X(t) = b (Murphy and O’Donohoe, 1975). Only recently, Crawford and Suchard (2011)

give a robust numerical method for inverting the Laplace transforms hab(s) to compute

the transition probabilities in any general BDP with arbitrary jumping rates {λk}∞k=0 and

{µk}∞k=0. In our heaping parameterization, in which we fix t = 1 and regard Pab(1) as a

function of an unknown parameter vector θ controlling the jumping reates, we imagine that

a birth-death process takes the true count Xi = x to the reported count Yi = y. Therefore,

our family of reporting distributions is given by

g(y|x,θ) = Pxy(1;θ), (5.6)

where the transition probability on the right side is computed using the parameters θ.

5.2.2 Specifying the jumping rates for heaping

Now that we can compute transition probabilities for general BDPs, we must specify the

jumping rates {λk}∞k=1 and {µk}∞k=1 in the process so that the desired heaping behavior occurs.

In our application, we assume that heaping occurs at multiples of 5. We therefore design a

BDP in which the random walk is attracted to nearby multiples of 5. We further assume that

misremembering increases with increased counts. This seems intuitively resonable: subjects

whose true number of sex acts is greater than 100 may be less able to accurately recall this

number than subjects whose true count is less than 10. For this reason, and to keep the

variance in the reporting distribution from growing unreasonably large, we specify that the

propensity for over- or under-reporting scales roughly with the logarithm of the true count.
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Note that if the true count is k, the quantity k mod 5 is the (positive) deviation from the

greatest multiple of 5 that is less than k. Likewise, 5− (k mod 5) is the (negative) deviation

from the next multiple of 5 that is greater than k. Let θ = (θup, θdown, θround) be the

three-element vector of heaping parameters. Since the rates of a BDP must be non-negative,

we restrict the elements of θ to be non-negative as well. Now consider a BDP with jumping

rates

λk = θup log(k + 1) + θround(k mod 5)

µk = θdown log(k + 1) + θround

(
5− (k − 1 mod 5)

) (5.7)

Although the parametric form of (5.7) is somewhat complicated, the three-parameter vector

θ has a straightforward interpretation: θup and θdown represent the propensity to over- and

under-report; θround is the propensity of rounding up or down to multiples of 5.

Figure 5.2 shows reporting distributions for some specific values of the true count x. For

low true counts x, the distribution of the reported count y is centered very close to x. As

the true count x becomes larger, the distribution of y|x becomes more dispersed, and peaks

appear at nearby multiples of 5. We emphasize that there is no closed-form solution for

the transition probability Pxy(1|θ) = g(y|x,θ) for the BDP defined by (5.7). Fortunately,

numerical evaluation of these probabilities is fast and robust, even for very large x and y

(Crawford and Suchard, 2011).

It is also important to note that we do not suggest that each respondent mentally executes

a random walk, starting at his or her true count, to arrive at the reported count. Likewise,

we do not mean that our inference scheme involves simulation of a birth-death Markov chain.

The BDP is simply a convenient way to derive an infinite family of reporting distributions

that is 1) indexed by the true count X, 2) controlled by a small number of parameters that

are readily interpretable, and 3) can be computed quickly to provide the likelihood of the

reported count Y given the true count X. We use a BDP to parameterize the reporting

process because we know of no other probabilistic mechanism that can give rise to such

a rich family of probability distributions with the desired properties that requires so little

analytical and computational effort.
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Figure 5.2: Reporting probabilities g(y|x,θ) for x = 0, . . . , 80 for the heaping model. The

vertical probability axis is the same for each plot. Note that for small true counts x, the

reporting distribution g(y|x) is centered near x, but there is a nonzero probability that the

reported count is zero. For larger values of x, the reporting distribution becomes more

dispersed around x and has peaks at multiples of 5. In this figure, we use θ = (0.8, 0.6, 0.9)

to demonstrate the distinctness of the peaks that emerge when rounging is significant.
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5.3 A hierarchical model for longitudinal counts

In this section, we combine a generalized linear mixed model (GLMM) for longitudinal data

with the BDP heaping model for self-reported counts. Label subjects i = 1, . . . , N , with

each subject’s self-reported count Yit at each of ni time-points ti1, . . . , tini . In addition, we

record covariates Wit and Zit for each subject at each time point. Consider the following

hierarchical model for the reported count Yit:

Yit ∼ BDP(Xit,θ),

Xit has distribution Fit = GLMM(νit, ω),

log νit = Witα + Zitβi, and

βi ∼ Normal(0,Dβ)

(5.8)

where νti and ω are the subject-timepoint-specific mean and common variance of the GLMM.

Reasonable choices include the geometric, Poisson, negative binomial, or power-law distri-

butions. The mean νit is determined by a fixed effect α multiplying a vector of covariates

and a subject-specific random effect βi with variance Dβ. The parameters θ underlying the

reporting distribution via the BDP are assumed constant across all subjects and timepoints.

Figure 5.3 shows a graphical representation of this hierarchical model for longitudinal counts.

To complete our Bayesian hierarchical model for longitudinal studies, we specify prior

distributions as follows:

α ∼ N(α0,Dα),

θj ∼ Gamma(γj, kj) for j = 1, 2, 3

Dβ ∼ Inverse-Wishart(Ωβ,mβ), and

ω ∼ Inverse-Gamma(aω, bω).

(5.9)

We restrict attention in this paper to the challenge of modeling self-reported counts. Our

objective is not to explore prior elicitation or model selection; we only wish to illustrate the

usefulness of our novel reporting distribution and hierarchical model. A principled explo-

ration of prior specification, as performed by Lee and Weiss (2011), may be necessary in

general.
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Figure 5.3: Graphical representation of the longitudinal model for the count reported by

subject i at time t. Constant quantities (observations Yit and covariates Wit and Zit) appear

in red boxes; random quantities (unknown parameters and imputed true counts Xit) appear

in blue circles. The diagram does not show dependencies on hyperparameters via prior

distributions.
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5.3.1 Sampling from the posterior

To learn about the true count distribution and the parameters underlying the heaping pro-

cess, we must be able to estimate the joint posterior distribution of the unobserved true

counts and the unknown parameters. To accomplish this, we resort to posterior simulation

via Markov chain Monte Carlo. We describe standard Gibbs and Metropolis-Hastings sam-

plers for the full conditional distributions of α, β, θ, ω, and Dβ in the Appendix. Sampling

from the posterior distribution of true counts, conditional on these parameters and the ob-

served reported counts is more challenging, and we briefly describe our approach in this

section.

Let X and Y be the collection of all true and reported counts for each subject and

timepoint. Likewise, let Z and W be the collection of all subject- and timepoint-specific

covariate vectors. The posterior density is given by

Pr(α,β,θ, ω,Dβ,X | Y,Z,W) ∝ Pr(Y | X,θ) Pr(X | α,β, ω,W,Z,Dβ)

× Pr(θ) Pr(α) Pr(ω) Pr(β | Dβ) Pr(Dβ)

=

[
N∏

i=1

ni∏

j=1

Pr(Yij | Xij,θ) Pr(Xij | Zij,Wij,α,βi, ω)

]

× Pr(θ) Pr(α) Pr(ω) Pr(β | Dβ) Pr(Dβ).

(5.10)

We calculate the reporting probability Pr(Yij | Xij,θ) using the method outlined in sec-

tion 5.2.1; in general no closed analytic form exists. The lack of conjugacy between F =

Pr(Xit|Zit,Wit,α,βi, ω) and G = Pr(Yit|Xit,θ), and between F and the prior distributions

complicates matters significantly. Fortunately, the discrete nature of the count data makes

possible some simplifications. The conditional distribution of the unobserved true counts X

is given by

Pr(Xit = x | Yit = y,Zit,Wit,θ,α,βi, ω) ∝ Pr(Yit = y | Xit = x,θ) Pr(Xit | Zit,Wit,α,βi, ω)

= g(y|x,θ)f(x|φ)

(5.11)
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for each possible x. Although in principle the true count x could range from zero to in-

finity, this is clearly unrealistic for real-life counts. In practice, the distribution of Xit|Yit
is unimodal, decays quickly for x � y and x � y, and is centered near Yit. Therefore, if

g(y|x)f(x) ≈ 0 for x < xmin and x > xmax, then we sample Xit from

{xmin, xmin + 1, . . . , xmax} (5.12)

with probability proportional to

{
g(y|xmin)f(xmin), g(y|xmin + 1)f(xmin + 1), . . . , g(y|xmax)f(xmax)

}
(5.13)

where the dependence of f and g on φ and θ respectively has been omitted for clarity.

Sampling the true count Xit for each observed count Yit is computationally feasible because

we only need to compute the set of reporting probabilities g(y|x,θ) in (5.13) once for each

unique reported count, since the parameters θ that underly the reporting distributions are

the same for all subjects and timepoints. Sampling a true count for each observation is then

a matter of computing the subject- and timepoint-specific prior probabilities corresponding

to the observed data, and sampling a single count from (5.13). This scheme is a more formal

Bayesian version of the multiple imputation approach introduced in the context of heaped

or coarsened data by Heitjan and Rubin (1991).

5.4 Application to self-reported counts of sex acts

To illustrate the effectiveness of our mixture model and BDP parameterization of G, we

analyze a dataset derived from the CLEAR study of sexual behavior of HIV-positive youth

(Rotheram-Borus et al, 2001). Respondents (175, interviewed up to 5 times over several

years) reported the number of sex acts they engaged in during the previous three months.

Figure 5.4 summarizes the data. The top left panel shows longitudinal reported counts of

sex acts for each subject. The top right panel shows the distribution of interview times,

sorted by maximum follow-up time after baseline. The bottom left panel shows a histogram

of aggregate reported counts of sex acts across all subjects and timepoints, and the bottom

right panel shows the same histogram in greater detail. There are several striking features

137



0 200 400 600 800 1000

0
10

0
30

0

Days from baseline

S
ex

 a
ct

s

0 200 400 600 800 1000

0
50

10
0

15
0

Days from baseline
S

ub
je

ct
 id

 (
so

rt
ed

)

Reported sex acts

D
en

si
ty

0 100 200 300 400

0.
00

0.
10

0.
20

Reported sex acts

D
en

si
ty

 (
zo

om
ed

)

0 100 200 300 400

0.
00

0.
02

0.
04

Figure 5.4: Summary of longitudinal self-reported counts of sex acts. Top left: reported sex

acts over time, from baseline for all subjects. Top right: illustration of longitudinal samples

(black squares) for each subject, at each time point. The subjects are sorted by maximum

follow-up time. Bottom left: histogram of aggregate reported sex acts in the previous three

months, for all subjects, at all time points. The bin size is one. Bottom right: the same

histogram in greater detail. Note the peaks at multiples of 5 and 10.
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of the reported counts: 1) A large proportion of the counts are zero; 2) the histogram clearly

shows peaks at integer multiples of 5 and 10; and 3) a few counts are very large: 14 are over

100. Researchers are typically interested in the true distribution of counts of sexual acts and

insight into reporting errors (by way of θ). In addition, insight into the heaping/rounding

process may provide useful prior information that can be used to mitigate the effects of

heaping in future studies.

The unique features of the dataset make traditional analysis (for example, classical Pois-

son random effects regression) unappealing, since the histogram of reported counts in Figure

5.4 appears both multimodal and overdispersed. Instead, we use the longitudinal hierarchi-

cal framework outlined in the previous section to learn about the underlying true counts and

the heaping process. To do this, we need to specify and justify the reporting distribution

G(X,θ). We must make several assumptions, informed by the results of relevant public

health studies (Westoff, 1974; Golubjatnikov et al, 1983; Wiederman, 1997; Weinhardt et al,

1998; Fenton et al, 2001; Ghosh and Tu, 2009). Based on the histogram of aggregate counts

in Figure 5.4, we assume that heaping occurs at multiples of 5, and we use the BDP rate

model in (5.7). We also find it intuitively reasonable that the variance of Yit|Xit increases

as Xit gets larger. We therefore assume heuristically that the propensity to misremember

increases roughly with the logarithm of the true count, as shown in (5.7).

We let Wit in (5.8) be a 8 × 1 vector of covariates for subject i at time t as follows:

age, gender, an indicator for men who have sex with men (MSM), an indicator for injection

drug use, time since baseline interview, indicators for intervention via telephone and in-

person, and an indicator for use of methamphetamine or other stimulant drugs. Most of

these covariates remain unchanged over the time points. Some, such as time since baseline

interview, use of drugs, and intervention types, do change with t. We let Zit = 1, making βi a

scalar; this provides a subject-specific random intercept. We specify the underlying GLMM

to be a negative binomial distribution with mean νit and common variance ω to allow for

over-dispersion.

We specify prior distributions as given in (5.9), with the exception of one: since the

subject-specific intercept βi is now a scalar, its prior distribution is now Inverse-Gamma,
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and we have

βi ∼ Inverse-Gamma(Ωβ,mβ). (5.14)

We specify hyperparameters as follows: for the fixed effects α, α0 = 0 and Dα = 10I where

I is the identity matrix; for the heaping parameters θ, γj = 2 kj = 4 for j = 1, 2, 3; for

the subject-specific random effects βi, Ωβ = 1 and mβ = 200; and for the overdispersion ω,

aω = 5, and bω = 20.

5.4.1 Results

To evaluate the usefulness of our heaping method, we fit a Bayesian hierarchical model with

and without heaping. In the model without heaping, we did not infer the true counts Xit or

rounding parameters θ. To fit each model, we sampled from the posterior distributions of

X and the unknown parameters (φ,θ) using the scheme outlined in section 5.3.1. Estimates

of the fixed effects α for both models are summarized in Figure 5.5, with results for the

model without heaping shown on the left and results for the model with heaping shown on

the right. The whiskers denote the 2.5th and 75th percentiles, and the black dot shows the

median. Subject age and study timepoint were normalized. Subjects who received either

telephone or in person intervention showed higher true counts in relation to controls, and

stimulant use was associated with higher true counts. To a lesser extent, trading sex was

associated with higher true counts. Interestingly, male subjects were associated with higher

true counts under the model with heaping, but not in the model without heaping.

Figure 5.6 shows marginal posterior boxplots of the reporting parameters θ. These esti-

mates offer a straightforward interpretation. The first element of θ, marked “Up” indicates

substantial over-reporting with wide variability. The second element of θ, marked “Down”

indicates low levels of under-reporting. In every sample from the posterior distribution of θ,

we found that θup > θdown, so we conclude that the posterior probability Pr(θup > θdown) ≈ 1.

The third element of θ is the heaping/rounding parameter, which indicates that subjects

engage in rounding to nearby multiples of five, a conclusion that may be self-evident from

the histogram of reported counts in Figure 5.4. It is important to note that these estimates
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Figure 5.5: Marginal posterior estimates of the fixed effects parameters α. The results for

the model without heaping are shown on the left, and those for the model with heaping are

shown on the right. The black dot denotes the median and the whiskers mark the 2.5 and

97.5 percentiles. Perhaps surprisingly, both telephone (Intv-t) and in-person interivewing

(Intv-p) is associated with higher true counts of sex acts. Methamphetamine/stimulant use

(Stim), and to a lesser extent trading sex (Trade) are also associated with higher counts.

Age, sexual preference (MSM), time on the study (Time). In general, estimates for the fixed

effects are very similar for both models under comparison, but under the heaping model,

male subjects have increased true counts.
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Figure 5.6: Marginal posterior estimates of heaping parameters θ. There is substantial and

varying over-reporting (Up), little under-reporting (Down), and moderate rounding for the

CLEAR sex act dataset, under our model for the underlying true counts. These parameters

represent the reporting behavior that best explains the difference between the estimated true

counts Xit and the observed reported counts Yit.

do not necessarily reflect the true misreporting behavior of the subjects in the study. Rather,

the estimates indicate the misreporting behavior that best explains the difference between

the inferred true counts Xit and the observed reported counts Yit.

The inferred distribution of true counts is shifted toward lower values than the reported

counts. In addition, the variance of imputed true counts increases as the reported count

becomes larger. To make this clearer, Figure 5.7 shows examples of the conditional distri-

bution of Xit|Yit for several subjects, whose reported counts are shown by a gray line. Note

that the covariates Wit can substantially impact the estimation for Xit in different subjects.

Figure 5.8 shows two-dimensional histograms of posterior predictive residuals as a func-

tion of reported count and normal quantile-quantile plots of residuals for both models. On
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Figure 5.7: Examples of the inferred marginal posterior distributions of true counts Xit for

individual subjects under the heaping model. A gray vertical line denotes the reported count.

the left, the model without heaping fits well for very small counts, but residuals quickly be-

come very large for the sparser high reported counts. On the right, the model with heaping

has small residuals clustered near zero for most reported counts. The 5%, 50% and 95%

quantiles are shown overlaid on the density plots. The normal Q-Q plots reveal the sub-

stantial deviation from normality in the residuals for the model without heaping. Note the

different spans of the sample quantiles in the vertical axes. The heaping model has fairly

normal residuals, which appear binned in the Q-Q plot because they are integer counts.

5.5 Discussion

In this paper, we have illustrated how researchers can infer true integer counts from inac-

curate reported counts by formulating an explicit model for heaping. Furthermore, we have

demonstrated how a mixture model approach can disentangle true counts from the round-

ing/heaping/misremembering process that generates the reported counts. To accomplish

these goals, we have employed an established Bayesian hierarchical model for longitudinal
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Figure 5.8: Posterior predictive residual densities for the model without heaping (left) and

with heaping (right). The top panels show two-dimensional histograms of posterior predictive

residual density by corresponding reported count. In these two-dimensional histograms,

darker color indicates greater density. The 5%, 50%, and 95% quantile lines are overlaid. At

bottom, normal quantile-quantile plots of posterior predictive residuals. The residuals for

the model without heaping are highly non-normal. The residuals for the model with heaping

are so small that the integral nature of the counts can be seen in the quantiles.
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observations. Our most substantial innovation is the novel reporting distribution G(X,θ)

based on a birth-death Markov chain with special jumping rates. Use of a birth-death pro-

cess to model overdispersion or reporting error has been proposed before (Grunwald et al,

2011; Lee and Weiss, 2011). However, we have substantially expanded the possibilities for

general birth-death models of reporting error to explicitly incorporate both overdispersion

and heaping, while providing a computational method to evaluate likelihoods and sample

from the posterior distribution of the true counts. This approach has the benefit of pro-

viding a sophisticated and highly configurable family of reporting distributions indexed by

the true count X. In addition, we accomplish this using only three parameters that have

intuitive meanings that should appeal to applied researchers conducting future surveys. In

our view, the most compelling reason for incorporating heaping into the hierarchical model

is illustrated in Figure 5.8. In exchange for more sophisticated modeling and increased com-

putational time, the posterior predictive residuals are far better behaved and more normal.

The model with heaping clearly fits the observed data better than the unheaped version.

In our application, the results for the fixed effects α and random effects β are similar

for the models with and without heaping, but under the heaping model, male subjects were

associated with higher true counts. We consider the mixture model approach to estimating

X and θ to be a useful way of understanding residuals. That is, our inferences of θ represent

the heaping behavior required to explain the differences between the observed counts Y and

the inferred true counts X, under Fit. In this way, we argue that incoroprating heaping

into a hierarchical model for counts does not substantially complicate Bayesian inference,

and yeilds a wealth of information on the rounding behavior that subjects must exhibit to

reconcile the observed counts with the inferred model for the true counts.

In order to apply our method, modelers must use a priori knowledge about the topics

addressed by the survey, and the characteristics of the survey population, to devise a mean-

ingful model for reporting errors. It remains unclear exactly how researchers can incorporate

meaningful prior information about reporting error into new studies. Applied and method-

ological research in public health offers some clues. Researchers in this field often address

the problem of reporting error in surveys related to sexuality and other taboo topics. Wang
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and Heitjan (2008) discuss validation of reported counts of cigarettes smoked by measuring

tobacco products in the blood. Other survey methods are possible, including using diary-

like surveys or repeated questionairres to assess reporting error. We propose that studies

like these can provide useful prior information about rounding parameters θ in our model.

Armed with prior information about rounding propensities, perhaps stratified by personal

attributes such as gender, age, or sexual orientation, public health researchers could proceed

with a Bayesian analysis similar to the one outlined in this paper to investigate the distri-

bution of true counts X, in addition to the more traditional quantities of interest (α and β

in this paper).

One benefit of abandoning conjugacy assumptions about f(x|φ) and g(y|x,θ) is that we

are free to choose a realistic parametric form for the distribution of true counts. For example,

many studies have observed that count data often follow power-law type distributions with

heavy tails (see, for example, Clauset et al (2007)), which could be easily incorporated into

our model for counts. Substantial increases in computational time usually accompany choice

of nonconjugate hierarchical models. In our case, we have tried to mitigate the increased

computational cost by incorporating efficient sampling routines. However, the heaping model

clearly increases computational time, which may not be appropriate for very large datasets

or time-sensitive analyses.

Finally, we caution that care must be taken to avoid applying a model for heaping when it

is inappropriate – apparent digit preference in a survey does not necessarily indicate heaping

or rounding. For example, a smoker may limit his or her daily consumption to a single pack

(usually 20 cigarettes). If many respondents to a questionnaire about smoking habits report

multiples of 20 cigarettes, modelers may wrongly assume that the subjects have rounded

their true counts, when in reality cigarette pack size imposes a natural unit of consumption

for smokers. Wang and Heitjan (2008) call this phenomenon “self-rationing”. Designing a

model that can accommodate various assumptions about both the mechanism generating

the true counts, and the cognitive process that gives rise to the reported counts, can be

challenging. Therefore, nonparametric techniques that can infer the locations of heaping

points in a parsimonious way might prove valuable. We are actively exploring this topic.
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5.6 Appendix

5.6.1 Sampling α

The full conditional distribution of α is

Pr(α | X,Y,Z,W,θ,α,β, ω,Dβ) = Pr(α | X,Z,W,β, ω)

∝ Pr(X | Z,W,α,β, ω) Pr(α)

=

[
N∏

i=1

ni∏

j=1

Pr(Xij | Zij,Wij,α, βi, ω)

]
Pr(α).

(5.15)

We sample α using a Metropolis-Hastings step with a multivariate normal proposal density

centered at the current state with an adaptive variance term. Letting α(j) be the jth sample

of α, the (j + 1)th proposal is

α(j+1) ∼ Normal(α(j), εjI) (5.16)

where ε1 = 0 and

εj+1 = εj +

1
j
#(successes)− 0.6

1 + log(j)
. (5.17)

Here, #(successes) is the number of accepted proposals, of the previous j proposals. This

adaptive variance term converges to a value that achieves the target acceptance probability

of 0.6 on average.

5.6.2 Sampling βi

Similarly, the full conditional distribution of βi is

Pr(βi | Xi,Yi,Zi,Wi,θ,α, ω,Dβ) = Pr(βi | Xi,Zi,Wi,α,Dβ)

∝ Pr(Xi | Zi,Wi,α, ω, βi) Pr(βi | Dβ)

=

[
ni∏

j=1

Pr(Xij | Zij,Wij,α, βi, ω)

]
Pr(βi | Dβ).

(5.18)

We also sample each βi using a Metropolis-Hastings step with a normal proposal density

centered at the current estimate using the adaptive variance procedure described above for

α.
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5.6.3 Sampling θ

The conditional posterior distribution of θ is

Pr(θ | X,Y,Z,W,α,β, ω,Dβ) ∝ Pr(θ | X,Y)

∝ Pr(Y | X,θ) Pr(θ)

=

[
N∏

i=1

ni∏

j=1

Pr(Yij | Xij,θ)

]
Pr(θ).

(5.19)

Since the elements of θ are non-negative, we use a proportional scaling proposal. At step j,

the proposal for the `th element of θ is

θ
(j+1)
` = θ

(j)
` exp

[
εj

(
U − 1

2

)]
(5.20)

where U is a random variable uniformly distributed between 0 and 1, ε1 = 1, and the adaptive

scaling εj is defined as above. Then using the change of variables formula, the proposal ratio

is
Pr
(
θ

(j)
` | θ

(j+1)
`

)

Pr
(
θ

(j)
` | θ

(j)
`

) = exp

[
εj

(
U − 1

2

)]
. (5.21)

5.6.4 Sampling ω

The full conditional density of ω is

Pr(ω | X,Y,Z,W,θ,α,β,Dβ) = Pr(ω | X,Z,W,α,β)

∝ Pr(X | Z,W,α,β, ω) Pr(ω)

=

[
N∏

i=1

ni∏

j=1

Pr(Xij | Zij,Wij,α, βi, ω)

]
Pr(ω).

(5.22)

We sample ω using a Metropolis-Hastings step with a proportional scaling proposal analagous

to the one illustrated above for the elements of θ.

5.6.5 Sampling Dβ

The full conditional density of Dβ is

Pr(Dβ | Y,Z,W,θ,α,β, ω,Dβ) = Pr(Dβ | β). (5.23)
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Recall that Dβ ∼ Inverse-Wishart(Ωβ,mβ). Conditional on β, we have

Dβ ∼ Inverse-Wishart
(
ββt + Ωβ, N +mβ

)
. (5.24)

where N is the number of subjects. Therefore Gibbs sampling of Dβ is accomplished directly.
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