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1 Introduction

1.1 Noise in biology

Physiological processes are dynamically controlled by genetic and metabolic networks
[117]. Gene regulation ensures that specific genes are expressed when required, in re-
sponse the environmental change for example. Gene regulatory networks are also re-
sponsible for cell differentiation, as well as for circadian rhythms. Likewise, metabolic
regulations ensure that specific compounds are synthetized when needed and remains at
some homeostatic level. These networks are formed by complex assemblies of proteins,
DNA, and metabolites and various level of regulations (transcription, mRNA processing,
allosteric modifications of proteins, protein posphorylation, complexations, catalysis, etc).

Biological systems are successful despite existing in a stochastic environment and
despite the probabilistic nature of the biochemical reactions. Experimentalists
and modelers, however, are just beginning to unravel the intricate interplay of noise with
determinism in these systems. They are guided by an increasing number of theoretical,
computational, and experimental tools. These techniques have been proven successful in
each area of biology, including neural, genetic, and metabolic networks.

The importance of noise in molecular biology has long been recognized [23, 24]
but it is only within the last 15 years that stochastic effects have been unambiguously
measured during gene expression in both bacteria [29, 83, 95] and eukaryotes [19, 91, 122],
including human cells [102] (for reviews, see [92, 112]). At the same time, the rediscovery
of the Gillespie algorithm [38] and the availability of large amounts of in vivo data, has
led to a new recognition of the importance of modeling and quantitative data analysis in
both the experimental and theoretical communities, spawning the new field of systems
biology [25, 30, 69]. Seminal modeling papers demonstrating that stochastic effects could
alter cellular phenotypes were those of Arkin, McAdams and co-workers [8, 74]. Since
then, synthetic biology has allowed theoretical conjectures to be tested in living cells
[75, 105] and there has been an explosion in both modeling and experimental work (see
refs. [50, 89, 61, 92, 58, 15, 103, 72, 20] for reviews and [12, 28, 31, 34, 45, 46, 53, 56, 65]
for specific applications of synthetic biology). Interesting parallels can be done between
electric circuits and genetic modules [7, 123]

New experimental techniques are driving understanding, and models can now be directly
compared with experiments. Molecular biology has been revolutionized by the devel-
opment of fluorescent reporters and, indeed, they have allowed stochastic gene ex-
pression to be quantified in vivo. Today’s challenge is to understand the consequences of
such stochasticity for cellular “design” [112]: is noise a hindrance, potentially degrading
the function of biochemical networks, or is it a source of variability that cells exploit?
Another relevant question is to understand how the noise is propagated in genetics and
biomolecular networks [53, 85].
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1.2 Sources of noise

Intrinsic vs extrinsic noise

Noise has multiple sources. It can be intrinsic or extrinsic [29, 110]. Intrinsic noise,
also called molecular noise, is the noise resulting from the probabilist character of the
biochemical reactions, particularly important when the number of reacting molecules is
low. This kind of noise is inherent to the dynamics of any genetic or biochemical systems.
Extrinsic noise is due to the random fluctuations in environmental parameters (such as
temperature, pH, kinetic rates...). Both intrinsic and extrinsic noises lead to fluctuations
in a single cell and result in cell-to-cell variability. In many experimental or modeling
efforts, the challenge is to unambiguously identify these sources. Indeed, noise in one
system may be considered as dynamics in another. The challenge of appropriately bridging
spatiotemporal scales is a central theme in these issues [112].

Noise in genetic networks

Gene expression is a complex, two-stage process. First, the DNA of the gene is tran-
scribed into messenger RNA (mRNA) by the enzyme RNA polymerase: the information
stored in the nucleotide order on the DNA is copied into information stored by the nu-
cleotide order on the mRNA. An expressed gene can give rise to several mRNA transcripts.
Second, the mRNA is translated into protein by enzymes called ribosomes: the informa-
tion stored in nucleotides on the mRNA is translated into the amino acids sequence of
the protein. Several ribosomes can bind to and translate a single mRNA simultaneously.
In eukaryotic cells, an entire mRNA is synthetized, processed in the nucleus (splicing),
and then exported to the cytosol for translation. In bacteria, which have no nucleus,
translation occurs as soon as part of the mRNA is synthetized.

A region of DNA, called the promoter, controls transcription, and thereby gene expression.
An unregulated gene (said to be constitutively expressed) is shown in Fig. 1 for a bacteria.
The promoter contains only a binding site for RNA polymerase. Nearly all genes in vivo,
however, are regulated. Regulation is mediated by proteins, called transcription factors.
These proteins are able to bind to operator sites in the DNA of the promoter region.
Once bound, they either hinder the binding of RNA polymerase to the promoter (Fig. 1)
and thus repress gene expression (the transcription factors are then called repressors) or
they encourage the binding of RNA polymerase to the promoter Fig. 1 and activate gene
expression (the transcription factors are then called activators). Any particular promoter
can often be bound by both activators and repressors, leading to gene expression that can
be a highly nonlinear function of the transcription factor concentration. A further level of
control is that the transcription factor’s ability to bind DNA can be a nonlinear function
of the concentration of another molecule, called an inducer.

Most transcription factors in bacteria consist of two identical proteins bound to each
other (they are then called dimers) or sometimes of four identical proteins bound to
each other (they are then called tetramers). Such multimers aid the recognition of DNA
binding sites and contribute to the nonlinearity in expression of a gene as the inducer
changes. Each protein in the multimer can potentially bind to the inducer and, through
what is known as an allosteric interaction, the binding of an inducer to one protein in
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Figure 1: Gene expression in bacteria (adapted from Swain and Longtin, 2006 [112]).

the multimer increases the probability that an inducer will bind to another protein in
the multimer. Thus the transition of a transcription factor from being unable to bind
DNA to being able to bind DNA can be a very steep sigmoidal function of the inducer
concentration. Such non-linearities are often referred to as cooperativities, because one
protein cooperates with the other to help it to bind to the inducer.

All these processes are chemical reactions and are therefore potentially significantly stochas-
tic. Reacting molecules come together by diffusion, their motion being driven by random
collisions with other molecules. Once together, such collisions randomly alter the internal
energies of the reactants and thereby their propensity to react. Such stochastic effects,
however, are only important when mean numbers of molecules are low. Then, individual
reactions, which at most change the numbers of molecules by one or two, matter. This
stochasticity is referred to as intrinsic noise as it is inherent in the dynamics of any
biochemical system [29, 110]. When the number of molecules is high however, as occur in
many other processes, the fluctuations are averaged out and thi molecular noise can be
neglected.

It is not just the stochasticity intrinsic to a cellular process that generates variation;
other cellular processes are also fluctuating and interact with the process of interest.
The variation generated in this way is termed extrinsic noise [29, 110]. There are
numerous extrinsic variables. For example, as a cell grows, the number of ribosomes and
the variance in the number of ribosomes can change altering the noise in gene expression.
Similarly, fluctuations in the numbers of nutrients in the extracellular environment, in
the temperature, in the number of amino acids available intracellularly, etc., could all
influence gene expression. Experimentally, in fact, it is the extrinsic noise that dominates
intrinsic noise and sets cell-to-cell variation [29, 91].
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Noise-producing steps and noise propagation

Several steps in gene expression are stochastic and contribute to the overall noise. Noise
can be generated at the level of the protein (because translation is a stochastic process),
at the level of mRNA (because transcription is a stochastic process), or at the level of the
gene (because gene regulation is a stochastic process) (fig 2). The relative contributon
of these different sources of noise is the object of several theoretical and experimental
studies [83].

Figure 2: Noise-producing steps in gene expression (figure from [57]).

Noise propagates in gene and metabolic network (fig. 3). A key question is whether
network connectivity, and in particular the presence of positive or negative regulatory
feedbacks, can modulate the effect of molecular noise, either by reducing (buffering) or
amplifying it [53, 54, 55].

Figure 3: Noise propagation.
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1.3 Measuring the noise

Noise experiments begin with the insertion of a reporter gene (e.g. green fluorescent
protein driven by a promoter of interest) into the genome (fig. 4A). Cells are then cultured,
usually in a swirling flask to provide a uniform environment. Finally, the fluorescence of
many individual cells in that population is ascertained by microscopy or flow cytometry
[29, 19, 85, 91, 95, 83] (fig. 4B). Alternatively, individual cells can also be followed
over time, yielding important information on the dynamics of stochastic gene expression
[95, 77, 102] (see reviews by [69] and [57]).

To quantify the heterogeneity of the population, the variance across the population divided
by the mean squared is typically used, a parameter called the “noise” (fig. 4C). The
measured variable used to compute this differs from experiment to experiment, with
options including total fluorescence, mean fluorescence, or fluorescence among cells that
share similar morphological traits. In order to reduce to “growth” heterogeneity due to
the fact that all cell do not divide at the same time, the cells usually either synchronized
or selected at specific stage of the cell cycle [85, 29, 91, 102, 122].

Recently, experiments have begun to address the relationship between such extrinsic vari-
ability and intrinsic noise in gene regulation. An elegant approach recently developed is
based on detecting the expression of two different reporter genes that are controlled by
identical promoters in a single cell. The variation between the levels of reporter proteins
indicates the size of the intrinsic noise component, whereas the variance of the correlated
component of both realizations yields the size of the extrinsic fluctuations (fig. 4D). This
method was applied to both prokaryots (E. coli) [29] and eukaryots (S cerevisiae) [19, 91].

Figure 4: Measuring noise in gene expression (C, figure from [83]; D, fig. from [29]).
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1.4 Effects of noise

Precise internal regulation of biochemical reactions is essential for cell growth and sur-
vival. Initiation of replication, gene expression, and metabolic activity must be controlled
to coordinate the cell cycle, supervise cellular development, respond to changes in the
environment, or correct random internal fluctuations. The precision of these controls are
expect to be affected by the noise.

Noise can have various effects on the dynamics of the system. Since it induces fluctu-
ations (i.e. imprecision) in the behavior, it is often seen as destructive. Because cell
viability depends on precise regulation of key events, such signal noise has been thought
to impose a threat that cells must eliminate, or, at least, minimise. This noise-induced
variability in the cells is responsible for population heterogeneity [74], phenotypic vari-
ations [8, 106] or imprecision in biological clocks [10]. Fortunately, cells have developed
robustness mechanisms to attenuate those bad effects of noise (see next section).

On the other hand, since cells have to deal with noise, constructive effect of noise
whereby cells can take advantage of the noise have been postulated. These effects en-
compass noise-induced behaviors, tuning of the response (sensitivity of the signal) and
stochastic resonance (amplification of the response).

Noise-induced behaviors include noise-induced oscillations [98, 107, 121], noise-induced
synchronization [21, 73, 124], noise-induced excitability [119], or noise-induced bistability
[59, 98]. All these properties are revealed by the noise and are in principle not observed
in the deterministic formulation. However, to display these noise-induced phenomenon,
the system should present some characteristics. For example, noise-induced oscillations
can easily be obtained when the deterministic counterpart presents excitability. Many
of theoretical works aim at determining the conditions required for a system to exhibit
noise-induced behaviors.

Stochastic resonance, initially described in chemical systems [33] and later in biological
systems (see ref. [51] for a review), refers to the fact that an optimal level of noise can
boost the response of the system by modulating the signal-to-noise ratio. Such an effect
has been observed and measured in fish predation behavior [97].

Stochastic focusing refers to the phenomenon whereby cells utilize the noise to enhance
the sensitivity of intrinsic regulation through a gradual tuning of the response [84]. Al-
though the precision of regulatory controls is usually greatly affected by the noise, under
some conditions an opposite effect can be observed: noise converts a gradual response
into a threshold driven mechanism. Stochastic focusing resembles stochastic resonance
in that noise facilitates signal detection in nonlinear systems, but stochastic resonance is
related to how noise in threshold systems allows for detection of subthreshold signals and
stochastic focusing describes how fluctuations can make a gradual response mechanism
work more like a threshold mechanism. Thus in addition to the regulatory control through
feedback loops, stochastic focusing plays an important role in affecting precision control
and imposing checkpoints in critical cellular processes.
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1.5 Noise, robustness and evolution

Robustness is a property that allows a system to maintain its functions despite external
and internal noise. Despite constructive effects observed in specific systems, noise is often
perceived as a nuisance for the organism. Therefore it is commonly believed that robust
traits have been selected by evolution. This was made possible by specific architectural
features observed in robust systems. Recently the discovery of fundamental, systems-level
principles that underly complex biological systems became an issue of primary importance
in systems biology. It is one of the fundamental and ubiquitously observed systems-level
phenomena that cannot be understood by looking at the individual components. A system
must be robust to function in unpredictable environments using unreliable components
[62].

The role of the topology of gene networks, and in particular the regulations, has been
investigated by several authors [1, 13, 14, 82, 83, 104]. These works underly the role of
positive and negative feedback in the stability of the behavior of the networks and give
insight on how the newtorks have evolved (see also the comment by Gardner and Collins
[34])

A nice experimental demonstration of the role played by auto-regulation in the robustness
of gene expression was published by Becskei & Serrano [14]. Using a simple genetic
construction consisting of a regulator and transcriptional repressor modules in E. coli,
they have shown the gain of robustness produced by negative feedback loops.

Another typical example used to assess the robustness of biological systems pertains to
the transduction networks responsible for chemotaxis in the bacteria E. coli [3, 9]. Barkai
& Leibler [9] propose a mechanism for robust adaptation in this simple signal transduc-
tion networks. They show that adaptation property is a consequence of the network’s
connectivity and does not require fine-tuning of parameters. Kollman et al. [63] com-
bine theoretical and experimental analyses to investigate an optimal design for this same
signalling network. They demonstrate that among these topologies the experimentally
established chemotaxis network of E. coli has the smallest sufficiently robust network
structure, allowing accurate chemotactic response for almost all individuals within a pop-
ulation. These results suggest that this pathway has evolved to show an optimal chemo-
tactic performance while minimizing the cost of resources associated with high levels of
protein expression.
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Figure 5: The state of a system can be shown as a point in the state space. In this
figure, the state space is simplified into two dimensions. Perturbations forcefully move
the point representing the systems state. The state of the system might return to its
original attractor by adapting to perturbations, often using a negative feedback loop.
There are basins of attractions in the state space within which the state of the system
moves back to that attractor. If the boundary is exceeded, the system might move into
an unstable region or move to other attractors. Positive feedback can either move the
systems state away from the current attractor, or push the system towards a new state.
Often, stochastic processes affect transition between attractors, but maintenance of a new
state has to be robust against minor perturbations (Figure from [62]).
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2 Theory of stochastic processes

Long before being used in biology, stochastic formalisms and methods have been devel-
oped, namely in the study of stochastic effects in systems of chemical reactions [32, 81,
93, 120]. In biology, similar mathematical models and simulation methods are used and
have been extended to account for the constraints imposed by the biological systems.

If the noise is intrinsic, a master equation governing the time evolution of the probability
of the states of the system is adopted. If the noise is extrinsic, noise terms are added to
the deterministic equations. In some case, noise in specific parameters can be considered.

For any system of biochemical reactions, the ultimate level of description is the chemical
master equation (Fig. 7). This equation describes how the probability changes with
time for any state of the system, where each state is defined by the number of molecules
present of each chemical species. The master equation contains the deterministic, differ-
ential equation approximation that is often used to describe system dynamics: the mean
of each chemical species obeys these deterministic equations as the numbers of molecules
of all species increase.

The master equation itself is analytically solvable only for systems with first-order re-
actions. Nevertheless, several approximations exist, all of which exploit the tendency of
fluctuations to decrease as the numbers of molecules increase. The most systematic and
complex is the linear noise approach of van Kampen [120]. If the concentration of each
chemical species is fixed, then changing the system size (volume) Ω , alters the number
of molecules of every chemical species. The linear noise approximation is based on a sys-
tematic expansion of the master equation in Ω−1. It leads to Fokker-Planck equations
that accurately describe small fluctuations around the stable attractor of the system.

For systems that just tend to steady state, a Langevin approach is also often used (see
examples in [49, 111]). Here white noise terms are added to the deterministic equations,
with their magnitude being determined by the steady-state chemical reactions. At steady
state, the Langevin and linear noise approaches are equivalent.

Unfortunately, all these methods usually become intractable once the number of chemical
species in the system reaches more than three. One then needs analytical inversions of
4x4 matrices or a calculation of their eigenvalues. Rather than numerically solving the
master equation, the Gillespie algorithm [38], a Monte Carlo method, is often used to
simulate one sample time course from the master equation. By doing many simulations
and averaging, the mean and variance for each chemical species can be calculated as a
function of time. The equivalence between the discrete description and the continuous
master equation has been demonstrated by Gillespie [39].
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2.1 Deterministic vs stochastic approaches

Stochastic models should be opposed to deterministic models. Deterministic models
includes several classes of models, whose the most usual is represented by systems of
ordinary differential equations (ODE). In these approaches the behavior of the model is
perfectly predictable. In stochastic models, the probabilistic aspects are taken into
account. Therefore the entirely predictable character is lost (fig. 6). When large numbers
of molecules are present (bio)chemical reactions usually proceed in a predictable manner
because the fluctuations are averaged out. However when only a few molecules take part
to a reaction, as typically occurred in a cell, stochastic effects become prominent. They are
manifested by occurrence of fluctuations in the time course of the reactants. Deterministic
behavior can be seen as a limit of the stochastic behavior when the number of molecules
is high.
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Figure 6: Deterministic versus stochastic time series. (A,B) Evolution to a steady state.
(C,D) Self-sustained oscillations.
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2.2 Examples and definitions

Deterministic description

Consider the following reaction

R1 : A + B
k1−→ C. (1)

The deterministic time evolution of the reactants A, B and the product C in the reaction
R1 is classicaly described by the following differential equations:

d[A]

dt
=

d[B]

dt
= − k1[A][B] (2)

d[C]

dt
= k1[A][B] (3)

This deterministic approach assumes that the time evolution of concentrations [A], [B],
and [C] is continuous and obeys to the mass action law. The law of mass action stipu-
lates that the rate of a chemical reaction is proportional to probability that the reacting
molecules will be found together in a small volume. The probability of finding one re-
actant in a small volume is independent of finding another reactant in the same volume;
therefore, the probability of finding them both in the same volume is the product of their
concentration and the reaction rate is given by

v = k1[A][B] (4)

The kinetic constant k1 characterizes the reactive1 collisions of molecules; it will depend
on factors like the physical properties of the molecules or the temperature.

Simarly, for the reaction

R2 : 2A
k2−→ B (5)

the deterministic evolution equation for the concentration [A] writes

d[A]

dt
= −2k2[A]2 (6)

This deterministic description is valid for high concentrations of reactants. For the case
where the number of reactants is low compared to the total volume (low concentration)
this deterministic behavior may noy be valid anymore. For low concentrations, one can
see that each reactant will have a low chance to collide with the other. The reaction
process will not occur continuously but discretely. We talk about jump (discret) Markov2

process instead of continuous Markov process.

We must also keep in mind that, with low numbers of molecules, the effect molecular
fluctuations (or molecular noise) on the probabilities of reaction will not be negligible. To
account for these fluctuations a stochastic description is required.

1Some collisions may be non-reactive i.e. collisions that do not give reaction
2Markov process because the future state of the system at time t+dt depends only on its passed state

at time t, where dt is the time unit of the process.
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Stochastic description

In order to track the time evolution of a quantity XA of molecules A in reaction R1, we
will consider the problem in term of probability of reaction: what is the probability that
reaction R1 occurs ?

Definition 1 (State Probability) We will define by P (XA, XB, t), the probability that
the system is in the state (XA, XB) at time t, i.e the probability to have XA molecules of
A and XB molecules of B at time t.

More generally, we will denote by P (X1, · · · , Xn, t) the probability that a given system is
in the state (X1, · · · , Xn) at time t.

Definition 2 (Reaction Probability) We will define by P (Ri, [t; t+dt]), where i ∈ N,
the probability that a given reaction Ri occurs in the time interval [t; t + dt].

The stochastic reaction constant c

We assume that the average probability that a reaction Ri occurs in the time interval
[t; t + dt] is given by ci × dt, where ci is called the stochastic reaction constant of the
process. That means that

⟨P (Ri, [t, t + dt])⟩ = ci × dt. (7)

The stochastic reaction constant ci will depend on reactive collisions of molecules. It
enables characterizing chemical reactions in terms of ”reaction probability per unit of
time” instead of ”reaction rate” as it is in the RRE case.

We say reaction probability per unit of time but we must keep in mind that this time unit
is fixed by dt (the time variation). For simplicity P (Ri, [t, t + dt]) will be simply denoted
P (Ri, t).

Propensity function For the case of reaction R1, with XA molecules of A and XB

molecules of B there exists XAXB possible distinct pairs of molecules (A, B). So,

P (R1, [t; t + dt]) ! P (R1, t) = XA(t)XB(t) · c1 · dt (8)

! w1(XA, XB) · dt. (9)

Function w1(XA, XB) = c1XA(t)XB(t) is called the propensity function of reaction R1.
More generally, for R reactions involving N different types of reactants, we can define
R propensity functions wr(X1, · · · , XN) , with r = 1, · · · , R, that depend on all the N
reactants of the process.
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Example 1 Consider the reaction process

R2 : 2A
k2−→ B. (10)

With XA molecules of A, the reaction probability is

P (R2, t) =
XA(XA − 1)

2!
· c2 · dt. (11)

We have
(

XA

2

)

possible combinations of 2 molecules A in a total number of XA molecules

of A (we have
(

XA

2

)

= XA!
2!(XA−2)! = XA(XA−1)

2! ). The deterministic time evolution of A is
characterized by

d[A]

dt
= −2k2[A][A]. (12)

Relationships between c and k

We will show here relations between the reaction rate constant ki and the stochastic re-
action constant ci. Since the deterministic and the stochastic approaches are equivalents
when we work with a large number of molecules, we do the assumption that, there exists
a very large number of reactants.

To illustrate these relations between ki and ci let present these two simple cases of reac-
tions.

Notation: We will denote by V the total volume where the reaction occurs. So [A] is a
concentration equal to XA

V . For simplicity we will write XA instead of XA(t).

Case 1 : Consider reaction R1 defined by A + B
k1−→ C.

Reaction R1: A + B
k1−→ C

Deterministic Stochastic

d[C] = k1[A][B]dt dXC ! P (R1, t) = c1XAXBdt

dXC

V
= k1

XAXB

V 2
dt ⇔ dXC =

k1

V
XAXBdt dXC = c1XAXBdt

Since the evolutions of number of molecules XC(t) are the same in the deterministic and
the stochastic cases (because of the assumption XA, XB large), one deduces that

c1 =
k1

V
. (13)

15



Remark 1 Moles instead of Number of molecules are usually used for molecular concen-
trations in chemical reactions. So the Avogadro’s number (denoted NA) has to be taken
into account in this case. We will have c1 = k1

V NA
.

This relation between ki and ci is not unique and depends on the type of reaction.

Case 2 : For reaction R2 : 2A
k2−→ B of example (1), we have

Reaction R2: 2A
k2−→ B

Deterministic Stochastic

d[B] = k2[A]2dt dXB ! P (R2, t) = XA(XA−1)
2! · c2 · dt

dXB

V
= k2

X2
A

V 2
dt ⇔ dXB =

k2

V
X2

Adt dXB = c2
XA(XA − 1)

2!
dt "

c2

2!
X2

Adt

When XA is large, then XA − 1 ≃ XA. Then

c2 "
2k2

V
. (14)

Remark 2 Notice that for reaction R2 one can also write that

Deterministic Stochastic

d[A] = −2k2[A]2dt dXA ! −2P (R2, t) = −2XA(XA−1)
2! · c2 · dt

dXA = −
2k2

V
X2

Adt dXA = −2c2
XA(XA − 1)

2!
dt " −

2c2

2!
X2

Adt

That means that

c2 "
2k2

V
, (15)

which is consistent with equation (14).
The stoichiometry of the reaction is taken into account when populations of chemical

species are updated. For instance, for reaction 2A
k2−→ B, quantities of reactants and

products will be updated by A = A− 2, B = B + 1 at each reaction step in the Gillespie’s
algorithm (see Chap. 3).

Table (1) presents relations between the stochastic reaction constant c and the reaction
rate constant k for various types of reactions. In the 2nd column of Table (1), we also
give the total number, h, of distinct reactive n-tuples (n ∈ N) of reactant for each type
of reaction.
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Reaction Number h Relation between c and k

A
k→ XA c = k

A1 + A2
k→ XA1

XA2
c =

k

V

A1 + A2 + · · · + An
k→

∏

XAi
c =

k

V n−1

2A
k→

XA(XA − 1)

2!
c =

2k

V

XA

XA − 1
≃

2k

V

3A
k→

XA(XA − 1)(XA − 2)

3!
c =

3! k

V 2

X2
A

(XA − 1)(XA − 2)
≃

3! k

V 2

nA
k→

∏n
i=1 (XA − i − 1)

n!
c =

n! k

V n−1

Xn−1
A

∏n−1
i=1 (XA − i)

≃
n! k

V n−1

2A1 + A2
k→

XA1
(XA1

− 1)

2!
XA2

c = · · · ≃
2k

V 2

n1A1 + · · · + nNAN
k→

N
∏

j=1

[
∏nj

i=1 (XAj
− i − 1)

nj !

]

c = · · · ≃
∏N

i=1 ni! k

V (
P

N
i=1

(ni−1))

⋆
k→ 1 c = kV

Table 1: Relations between c and k. The propensity function is w = h × c. h is the total

number of distinct combinations of reactive reactants. Reaction ⋆
k→ denotes a constant

production source of products.
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2.3 Master equation

The master equation governs the stochastic dynamics of Markov process [81, 93]. This
equation is universal and has been applied in problems in physics, chemistry, biology,
population dynamics, and economy. For a review of the theory of stochastic systems
applied to genetics and molecular networks, see [76, 116, 115].

From the deterministic to the stochastic formulation

We will show here how to derive the master equation for a system of chemical reactions.
We start from the deterministic formulation. Let’s consider the reaction:

n1 X1 + n2 X2 + ... → p1 X1 + p2 X2 + ... (16)

The evolution equation for the concentration of Xi is governed by the mass action law:

d[Xi]

dt
= ηiv with ηi = pi − ni (17)

In equation (17), v is the reaction rate and is proportional to the product of the reacting
species:

v = k[X1]
n1 [X2]

n2 ... = k
∏

i

[Xi]
ni (18)

Parameter k is the rate constant. Parameter η is called the stoechiometric coefficient.
This coefficient is positive if, globally, the species i is produced (pi > ni) and negative if
the species is consumed (or transformed) (ni > pi).

We are usually interested by systems of coupled chemical reactions involving several chem-
ical species:

n11X1 + n21X2 + ... → p11X1 + p21X2 + ...

n12X1 + n22X2 + ... → p12X1 + p22X2 + ...

...

n1RX1 + n2RX2 + ... → p1RX1 + p2RX2 + ...

(19)

The variation of a given compound Xi involved in R reactions is defined by:

d[Xi]

dt
=

R
∑

r=1

ηirvr = ηi1v1 + ηi2v2 + ... + ηiRvR (20)

where

vr = kinetic rate of reaction r (r = 1, 2, ...R).
ηir = pir − nir = stoechiometric coefficient of compound Xi in reaction r.

For a given initial condition ([Xi](0)), the system of ordinary differential equations (20)
has a unique solution which describes the evolution of Xi with time.
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Usually these equations can not be solved manually, but standard numerical methods can
been used to compute the solution (Euler, Runge-Kutta, Stiff).

The stochastic formulation proceeds by considering the probability function P (X, t)
defined as the probability that there will be at time t, Xi molecules of species Xi. Let’s
define X = (X1, X2, ..., XN) the vector of molecular species populations. Knowledge
of this function provides a complete understanding of the probability distribution of all
possible states at all times. By considering a discrete infinitesimal time interval [t, t + dt]
in which either 0 or 1 reaction occurs (the probability of more than one reaction occurring
in time interval [t, t + dt] is O(dt) and hence vanishes in the limit dt → 0), we see that
there exist only R+1 distinct configurations at time t that can lead to the state X at time
t + dt (R possible reactions or no reaction). We can then write our probability function
at time t + dt as a function of all possible precursor states at time t:

P (X, t+dt) = P (X, t)P (no change over dt)+
R
∑

r=1

P (X−ηr, t)P

(

state change over dt

due to reaction r

)

(21)

where ηr is a stoechiometric vector defining the result of reaction r on state vector X, i.e.
X → X + ηr after an occurrence of reaction r. It is straightforward to show that

P

(

state change over dt

due to reaction r

)

= P (reaction r occurs) (22)

= wr(X − ηr))dt (23)

P (no change over dt) = P (no reaction occurs) (24)

= 1 −
R
∑

r=1

wr(X)dt (25)

where wr is the probability that reaction r occurs in the time interval [t, t + dt]. wr is
also called the propensity of reaction r. Note that the propensity function also depends
on the system size Ω. The more molecules are present, the higher is their probability to
react.

If we then note that

lim
dt→0

P (X, t + dt) − P (X, t)

dt
=

∂P (X, t)

∂t
(26)

we arrive at the chemical master equation that describes the stochastic dynamics of
the system

∂P (X, t)

∂t
=

R
∑

r=1

(wr(X − ηr)P (X − ηr, t) − wr(X)P (X, t)) (27)

Note that the evolution of the system only depends on its previous state and not on its
history. Such a property is refered to as a Markov process. One of the simplest type
of Markov process is the Markov chain. Markov chains are processes in which transitions
occurs between realization of discrete stochastic variables at discrete times, as in the case
of chemical reactions.
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Figure 7: Illustration of the different formalisms: (A) Deterministic evolution. (B)
Stochastic evolution (one realization of the process). (C) Stochastic evolution (10 re-
alizations). (D) Master equation.
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Birth-and-Death process

One of the most common application of the master equation is the description of birth-
and-death processes such as those one finds in chemistry and population dynamics.
Birth-and-death processes are processes in which transitions can only take place between
nearest neighbor states. For example, if one considers a population in which only one
individual (molecule) is produced at each birth and one individual (molecule) dies (is
degraded) at each death, then we have a typical birth-and-death process [81, 93].

Let’s consider first a single compound X which is produced at a rate kb and consumed
(transformed or degraded) at a rate kd:

kb−→ X
kd−→ (28)

The master equation gives the evolution of the probability P (X, t) to have X molecules
of the compound X at time t. A change in the number X of molecules X can result from
four events: (1) Starting from X molecules and having one “birth” reaction (X → X +1),
(2) Starting from X molecules and having one “death”reaction (X → X−1), (3) Starting
from X − 1 molecules and having one “birth” reaction (X − 1 → X), (4) Starting from
X + 1 molecules and having “death”reaction (X + 1 → X). These four possible events
are illustrated on the following scheme:

The master eq. (117) can be rewritten

∂P (X, t)

∂t
= kbP (X − 1, t) + kd(X + 1)P (X + 1, t) − kbP (X, t) − kdXP (X, t) (29)

Note that kd is multiplied by the number of molecules present in the system (X or X +
1) because the reaction rate for the degradation depends on the number of molecules:
wd(X) = kdX.

If the birth and death rate kb and kd are constant, equation (29) is linear and can easily
be solved analytically (see tutorial), while if kb and kd are function of time, i.e. kb = kb(t),
and kd = kd(t), then the equation is non-linear, and usually unsolvable analytically.

The general master equation for a birth-and-death process can be written [81]:

∂P ({Xi}, t)
∂t

=
∑R

r=1[kbr({Xi − ηir})P ({Xj ̸=i, Xi − ηir}, t)

+kdr({Xi + ηir})P ({Xj ̸=i, Xi + ηir}, t) − kbr({Xi})P (Xi, t) − kdr({Xi})P ({Xi}, t)]
(30)
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Examples

• We consider first a simple example involving three species X, Y, and Z reacting as:

X+Y
k−→ Z (31)

The transition probability is w(X, Y ) = kXY and the master equation is written

∂P (X, Y, Z, t)

∂t
= w(X + 1, Y + 1)P (X + 1, Y + 1, Z − 1) − w(X, Y )P (X, Y, Z)

= k(X + 1)(Y + 1)P (X + 1, Y + 1, Z − 1) − kXY P (X, Y, Z) (32)

• As a second example we consider the autocatalytic reaction:

A+X
k−→ 2X (33)

The transition probability is w(A, X) = kAX and the master equation is written

∂P (A, X, t)

∂t
= w(A + 1, X − 1)P (A + 1, X − 1) − w(A, X)P (A, X)

= k(A + 1)(X − 1)P (A + 1, X − 1) − kAXP (A, X) (34)

• The third example describes the reaction of X with itself (this could be for example
an homodimerisation)

2X
k−→ E (35)

The transition probability is w(X) =
k

2
X(X−1) and the master equation is written

∂P (X, E, t)

∂t
= w(X + 2)P (X + 2, E − 1) − w(X)P (X, E)

=
k

2
(X + 1)(X + 2)P (X + 2, E − 1) −

k

2
(X − 1)(X)P (X, E) (36)
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Fokker-Planck equation

In a number of problems involving Markov chains the “spacing” between states (the
number of molecules produced or consumed in a given step) is small compared to the
total number of molecules. This is the case of a system of chemical reactions, because
the step appearing in the birth-and-death master equation (30) (i.e. the number ηir of
molecules produced or destroyed in a given reaction is typically equal to one of two), is
small compared to the instantaneous values of the number of molecules (typically about
100 or 1000). In this condition the master equation can be approximated by the Fokker-
Planck equation [81], which can be derived from a expansion in Ω−1 (Ω being the system
size, or, in other terms, the number of molecules):

∂P (X , t)

∂t
= −

∑

i

(

∂

∂Xi
Fi(X)P (X, t)

)

+
∑

i,j

(

∂2

∂XiXj
Gi,j(X)P (X, t)

)

(37)

The first term in the right-hand side is called the drift term and the second term is called
the diffusion term. The drift term is related to the birth-and-death probabilities (i.e. the
kinetics), while the diffusion term describes the effect of noise (fig. 8). Both Fi(X) and
Gi,j(X) functions are related to the kinetics of the system:

Fi(X) =
R
∑

r=1

ηrwr(X) (38)

Gi,j(X) =
R
∑

r=1

ηrηr
T wr(X) (39)

where R in the number of reactions, ηr is the stoechiometry vector and wr is the propensity
of reaction r.

The Fokker-Planck equation is exact for the case when noise is a Gaussian white noise
(i.e. at the limit Ω → ∞).

Figure 8: Interpretation of the Fokker-Planck equation.
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Remark: Limitation of the theory

The chemical master equation provides a complete description for the chemical kinetics.
Even though the chemical master equation is linear, we are usually unable to solve it either
analytically or numerically as the dimension explodes with the number of molecules and
reactions. For example, if we consider a reaction

A # B # C (40)

then the order of the chemical master equation is equal the number of possible molecular
combinations. For 200 molecules, there are one million different molecular combinations
[90].

Gillespie (1976) gives another example of a chemical systems that involves 4 species (see
Gillespie 1976, p. 422):

X # Y

2X # Z

W+X # 2X (41)

The corresponding master equation can readily be written (this is left as an exercice):

∂P (X, Y, Z, W, t)

∂dt
= ... (42)

In theory the time evolution of the probability distribution can be solved once the initial
condition is given Starting from

P (X, Y, Z, W, t) = δx,x0δy,y0δz,z0δw,w0 (43)

we can in principle compute P (X, Y, Z, W, t) for all t. In practice, however, this equation
is virtually intractable, due to the astronomic amount of computer memory that would
be required to store the values of P on a 4-dimensional lattice for each t. Indeed, if we
assume that every variable can vary from 1 to 10000, then at a given time the probability
distribution is (10000)4 = 1012. If we then simulate the system over 106 time steps, we
need to store 1018 values!

Thus an alternative approach is to generate multiple realizations of the stochastic process
described by the chemical master equation, using for example Monte Carlo strategies,
as described in the next section. These realizations are usually sufficient to address our
questions, i.e. what is the mean and the standard deviation of the variable at steady
state, as well as along the trajectory from a given initial condition to the attractor.
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3 Numerical methods for stochastic simulations

3.1 Gillespie algorithm

In 1976-1977, Gillespie proposed an exact stochastic simulation algorithm to solve
the chemical master equation based on the assumptions that the system is homogeneous
and well mixed [37, 38]. The idea is to directly simulate the time evolution of the system.
At each time step, the chemical system is exactly in one state (i.e. the number of molecules
of each species is determined). The algorithm determines the nature of the next reaction
as well as the time interval ∆t till this reaction takes place, given that the system is
in a given state at time t. These two events are determined stochastically, according to
well-defined probabilities. The probalility of a reaction depends on its kinetics rate which
is a function of its corresponding kinetics constant and the number of molecules. Thus
using these rate constants and calculating the transition probabilities (kinetic rate), and
using two random numbers z1 and z2 (between 0 and 1), the algorithm determines which
reaction occurs and at which time interval.

If wi is the transition rate (propensity) of reaction i, then the probability that reaction r
occurs is

Pr =
wr

∑R
i=1 wi

=
wr

CR
(44)

and the reaction that will take place is reaction r if

Cr−1

CR
< z1 ≤

Cr

CR
(45)

which is equivalent to
Cr−1 < z1CR ≤ Cr (46)

where

Cr =
r
∑

k=1

wk (47)

is the cumulative function (Fig. 9)

Figure 9: Cumulative function used in the Gillespie algorithm.
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The time till this reaction occurs can be shown to follow the following probability distri-
bution (see Appendix 5.3):

P (τ, µ) = CR exp(−CRτ) (48)

and can be computed using the second random number, z2 as (see Appendix 5.4):

∆t =
1

∑R
i=1 wi

ln
1

z2
=

1

CR
ln

1

z2
(49)

In practice, after setting the initial species populations Xi and reaction constants kr the
algorithm runs in loop the following steps (until the final time is reached):

1. Calculate the transition probabilities wi which are functions of kr and Xi.

2. Generate z1 and z2 and calculate the reaction that occurs as well as the time till
this reaction occurs according eqs. (44)-(48).

3. Increase t by ∆t and adjust X to take account the occurrence of reaction r.

Figure 10: Gillespie’s algorithm output.

A key parameter in this approach is the system size, often denoted by Ω. This param-
eter has the unit of a volume and is used to convert a deterministic model (where the
variables and kinetics parameters are expressed in term of concentration) into a stochastic
model (where the variables and kinetics parameters are expressed in terms of number of
molecules). For a given concentration (defined by the deterministic model), bigger is the
system size (Ω), larger is the number of molecules. Therefore, Ω allows us to directly
control the number of molecules present in the system (hence the noise). Typically, Ω
appears in the reaction steps involving two (or more) molecular species because these re-
actions require the collision between two (or more) molecules and their rate thus depends
on the number of molecules present in the system.
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Next Reaction Method (Gibson & Bruck)

Gibson and Bruck, 2000 [44], proposed the Next Reaction Method as an enhancement
of Gillespie’s method. The Next Reaction method manages to improve time performance
of Gillespie algorithms substantially while maintaining exactness of the algorithm. As
mentioned above, Gillespie algorithms require enormous computational time for a system
with a large number of reactions. Gibson and Bruck’s algorithm avoids calculation that
is repeated in every iteration of the computation causing additional computational cost
in the Gillespie’s algorithm (table 2).

Tau-Leap Method

In 2001, Gillespie [40] presented the Tau-Leap Method to produce significant gains in
the computational speed with an acceptable loss in accuracy. Gillespie algorithms solve
the master equation exactly and obtain the exact temporal behavior of the system by
generating exact timing of each reaction. However, it is sometimes unnecessary to obtain
so much details from the simulation. Instead of finding out which reaction happens at
which time step, one may like to know how many of each reaction occur in a certain time
interval. If the time interval is large enough for many reactions to happen, one can expect
substantial gain in the computational speed. However, in order to maintain accuracy
of the method, one has to select an appropriate time interval, which needs to be small
enough so that the change in propensity function, is acceptable (table 2).

Delay Stochastic Simulation algorithm

Recently, Bratsun et al. [16] extended the Gillespie’s algorithm to account for the delay
in the kinetics (delay stochastic simulation algorithm) and show how such time de-
lay in gene expression can cause a system to be oscillatory even when its deterministic
counterpart exhibits no oscillations. Barrio et al [11] also used a delay stochastic simula-
tion algorithm to simulated delay differential model. They applied their algorithm to the
oscillatory regulation of Hes1. An analog procedure was used by Ribeiro et al [94] to sim-
ulate a delay variant of the toggle switch. Roussel and Zhou [96] presented a generalized
algorithm that accounts for single of multiple delays which can be fixed or distributed.

Alternative methods

In 1998, Morton-Firth et al., developed the Stochsim algorithm [66, 79]. The algorithm
treats the biological components, for example, enzymes and proteins, as individual objects
interacting according to probability distribution derived from experimental data. In every
iteration, a pair of molecules is tested for reaction. Due to the probabilistic treatment
of the interactions between the molecules, Stochsim is capable of reproducing realistic
stochastic phenomena in the biological system. Both the Gillespie algorithm and the
Stochsim algorithm are based on identical assumptions [79] (table 2).

Stochsim has been employed successfully in several biological systems, e.g. for exami-
nation of the fluctuations of molecules in a chemotactic signaling pathway of bacteria
[79, 101].
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Algorithm Accuracy Computational cost Speed
Gillespie very high very high slow
Tau-leap medium low medium
Gibson & Bruck very high high very high
Stochsim high high high

Table 2: Comparison of the performance of various stochastic algorithms (according to
Meng et al. [76]).

3.2 Langevin equation

An alternative way to simulate stochastic systems is to introduce a stochastic term ξ(t)
in the deterministic evolution equation. In this approach, the description is not in term
of molecules as in the Gillespie algorithm, but in terms of the concentration as in the
deterministic case. Such a system is referred to as stochastic differential equations.

The general stochastic equation is:

dX

dt
= f(X) + ξ(t) (50)

The definition of the additional term ξ(t) differs according to the formalism adopted. If
this term is assumed to account for a white (uncorrelated) noise, ξ(t) is chosen such as
its means is zero:

< ξ(t) >= 0 (51)

and its variance is given by

< ξ(t)ξ(t′) >= Dδ(t − t′) (52)

In this equation, D is proportional to the strength of the fluctuations and δ(t− t′) is the
Dirac function. D is therefore the key parameter to control the amplitude of noise in the
Langevin approach.

However, the noise depends on the number of molecules (concentration). A rigorous
equivalent between the master equation and the Langevin equation can be obtained by
considering a multiplicative noise (Gillespie, 2000):

dX

dt
= f(X) + g(X)ξ(t) (53)

Here the function g(X) describes the stochasticity resulting from the internal dynamics
of the system (cf. the diffusion term in the Fokker-Planck equation) and should be
appropriately chosen.
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Gillespie demonstrated that in the limit of low noise the chemical master equation is
equivalent to the following equation - that he named the Chemical Langevin Equation
(see derivation in Appendix 5.5):

dX

dt
=

R
∑

r=1

ηrwr(X(t)) +
R
∑

r=1

ηr

√

wr(X(t))ξr(t) (54)

where ξr is a Gaussian white noise:

ξr(t) = δrr′δ(t − t′) (55)

where the first δ function is the Kronecker’s and the second is Dirac’s.

The time evolution of X is thus governed by the sum of two terms: a deterministic drift
term, and a fluctuating term, as obtained in the Fokker-Planck equation.

Example

To illustrate the Langevin approach, let’s consider again the simple reaction scheme (28).

From the deterministic point of view, the evolution of X is given by:

dX

dt
= kb − kdX (56)

From the stochastic point of view, each reaction is a noisy process, and the mean is equal
to the variance of the noise. Separating the birth and the death process, we can write:

(

dX

dt

)

birth

= kb +
√

kbξ(t) (57)

(

dX

dt

)

death

= −kdX +
√

kdXξ(t) (58)

Since the reactions are uncorrelated, the variances add as follows:

dX

dt
= kb − kdX +

√

kb + kdXξ(t) (59)

The corresponding Fokker-Planck equation can then be written as (see [120]):

∂P (X, t)

∂t
= −

∂

∂X
[(kb − kdX)P (X, t)] +

1

2

∂2

∂X2
[(kb + kdX)P (X, t)] (60)
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In practice...

Integrating equation (53) or (54) is not straightforward because the integration time step
should be chosen appropriately to avoid to introduce artefactual correlations in the noise.
The easiest way to proceed is via Euler’s method, which is one of the simplest possible
numerical method for solving ordinary differential equations.

The principle is as follows: To solve dx/dt = f(x), with initial condition x(0) = x0,
Euler’s method requires to specify a small increment of time h, and then update, at each
time step, the value of x as x(t + h) = x(t) + hf(x), thus using straight-line interpolation
between the points at time t=0, h, 2h, 3h,... Smaller h, more accurate the solution. To
accomodate a stochastic term on the right-hand side, say dx/dt = f(x) + ξ(t), where ξ(t)
is random noise, we approximate x(t + h) − x(t) by hf(x) + ξ(t + h) − ξ(t). Then, once
again, we let the integration time step be as small as possible.

A slightly more accurate method is the Runge-Kutta algorithm (with a constant time
step). Note that due to the stochastic nature of the noise, an absolute precision is usually
not required, but be aware that in most biological applications, X must remain positive.

Gillespie vs Langevin simulation

To compare both the Gillespie and the Langevin approaches, we run some simulations of a
simple 1-variable system. A compound (e.g. a protein) is synthetized in an autocatalytic
way and degraded linearly.

The evolution of the concentration X writes:

dX

dt
= vs

X

KM + X
− kdX (61)

The propensity used in the Gillespie algorithm are defined by:

process reaction propensity

synthesis → X w1 = vsΩ
X

KMΩ + X
degradation X → w2 = kdX

Parameter Ω is the system size. It controls the number of molecules and thereby the level
of noise. Note that we use here the nonlinear Michaelis-Menten kinetics as a propensity.
This point is discussed in Section 4.3.

Gillespie simulations have been performed for various levels of noise (Fig. 11, left panels).

The Langevin equation writes:

dX

dt
= vs

X

KM + X
− kdX + ξ(t) (62)
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In a first test, we adjusted the level of noise, D, arbitrarily, so as to reproduce similar
results as with the Gillespie algorithm (Fig. 11, right panels).
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Figure 11: Comparison of the Gillespie and the Langevin approaches. The system (61)
is simulated on the left by the Gillespie algorithm and on the right with the Langevin
equation (62), with the noise amplitude D as indicated on each panel. Parameter values:
KM = 0.5, kd = 1, vm = 1. Initial condition: X(0) = 0.1. In each panel the grey curve is
the deterministic solution.

31



We then run simulations according to Eq. (54) which defines the noise amplitude D
as a function of Ω (through the propensities wr) (Fig. 12, right panels). A rigorous
quantitative comparison would require some statistics but a visual comparison shows
that the two approaches yield similar results.

0 5 10 15
0

2000

4000

6000

X

Ω=10000
Gillespie

0 5 10 15
0

200

400

600

X

Ω=1000

0 5 10 15
0

20

40

60

Time

X

Ω=100

0 5 10 15
0

0.2

0.4

X

Ω=10000

D (x1000)

Langevin

0 5 10 15
0

0.2

0.4

0.6

X

Ω=1000

D (x100)

0 5 10 15
0

0.2

0.4

0.6

Time

X

Ω=100

D (x10)

Figure 12: Comparison of the Gillespie and the Langevin approaches. In the Langevin
approach, we define the noise amplitude as in Eq. (54). The corresponding value of D
is indicated in red. It agrees with the value empirically found in Fig. 11 but undergoes
here some fluctuations because it is related to the propensities wr themselves dependent
on X.
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3.3 Spatial stochastic modeling

The spatial organization of cellular components and the dynamical localization of pro-
teins and other cellular compounds play a key role in cellular processes ranging from cell
shape, to cell cycle, and signaling cascades. This organization can be modeled by com-
partimentalization or by explicitely accounting for space (and diffusion) in addition to the
biochemical reactions [4].

There is no general theory to analyse spatial stochastic systems, but several approaches
have been attempted to deal with spatial effects. The two general approaches, described
above, i.e. the Langevin and Gillespie methods, have been extended to account for space.

Cell compartimentalization

When modeling cellular processes, it is often desirable to distinguish cell compartments.
Typically signal transduction involves receptors at the cell membrane, a cascade of pro-
teins activations (e.g. via phosphorylations), and the activation of transcription factors,
which, eventually, activate gene expression in the nucleus. Because proteins may have dif-
ferent functions or activity in the various cell compartments and because protein transport
may induce delay, it is common to distinguish the molecules with respect to their local-
ization. Moreover since the number of proteins in the nucleus may be strongly reduced
compared to the cytosol, stochastic effects may also be important.

The simplest way to account for such compartmentalization is to treat nuclear, cytosolic
and membrane proteins as different entities, and transport can be modeled in first approx-
imation, by standard mass action law (to be converted into propensities, as the chemical
reaction rates). Such sheme can thus be simulated by the Gillespie algorithm.

Figure 13: Cell compartimentalization.

Space and diffusion

Discrete spatial stochastic methods can be classified into lattice- and off-lattice-based
approaches [18]. In off-lattice methods, all particles in the system have explicit spatial
coordinates, at all times. At each time step, molecules with non-zero diffusion coefficients
are able to move, in a random walk fashion, to new positions. When 2 reacting species are
sufficiently close to each other, they may react, with a certain probability. Such particle
methods can provide very detailed simulations of highly complex systems at the cost of
exceedingly large amounts of computational time and, possibly, restrictions on the size
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of the simulation domain. Hence, such detailed simulations can often only yield short
simulation time spans that, in many cases, are of limited interest to simulated cellular
processes.

For lattice methods, a computational grid (generally two dimensional or three dimen-
sional) is used to represent a cellular compartment, such as a membrane or the interior
of some part of a cell. The lattice is then populated with particles of the different molec-
ular species that comprise the system, either at random or at chosen spatial locations,
depending on the problem at hand. All particles with non-zero diffusion coefficient are
able to diffuse throughout the simulation domain by jumping to empty neighbouring sites
and, depending on user-specified reaction rules, appropriate chemical reactions can take
place with a certain probability. It is worth noting that the grid can represent microscopic
or mesoscopic domains. In the former, each lattice site is allowed to host at most one
molecule. These microscopic lattice-based simulators are sometimes called Kinetic Monte
Carlo Methods [18].

A less computationally intensive alternative, albeit still costly in many scenarios, is
to consider molecular interactions in the mesoscopic scale. Here, the discretization of
the Reaction-Diffusion Master Equation (RDME) results in reactive neighbouring sub-
volumes within which several particles can coexist, while well-mixedness is assumed in
each subvolume. Following this line of thought, there are a few algorithms in the lit-
erature extending discrete stochastic simulators to approximate solutions of the RDME
by introducing diffusion steps as first order reactions, with a reaction rate constant pro-
portional to the diffusion coefficient. To simulate such system, an extension of the next
reaction method, called the next subvolume method has been developed [27].

Figure 14: Method for spatial stochastic approaches (figure from [18]).
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Figure 15: Comparison of various modeling approaches (figure from [5]).

Remarks:

A few additional aspects are worth considering:

• First, in mesoscopic lattice methods, as well as inefficiently posed off-lattice meth-
ods, problems may arise due to neglecting the “volume exclusion” effect (for ex-
ample, whenever a (sub)domain is populated by a large number of molecules that
would not physically fit). The same would hold for inefficiently posed microscopic
lattice methods, where each molecule is set to occupy a single site, irrespective of
its physical size.

• Secondly, molecular crowding can prevent reacting molecules from reaching regions
of the domain, due to the high concentration of macromolecules impeding their
passage. While this effect can be explicitly treated by microscopic lattice methods
(as well as some off-lattice methods), mesoscopic lattice methods are in a great
disadvantage, their expected accuracy being low when treating these cases.

• Lastly, the artificial nature of the lattice may not only limit the spatial resolution
of the simulation, but also introduce lattice anisotropy (boundary effets).
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3.4 Programs and softwares

Several softwares and scripts to simulate stochastic models have been recently developed:

• Copasi: COPASI [52] is a software application for simulation and analysis of bio-
chemical networks and their dynamics. COPASI is a stand-alone program that sup-
ports models in the SBML standard and can simulate their behavior using ODEs or
Gillespie’s stochastic simulation algorithm; arbitrary discrete events can be included
in such simulations.
Availability: http://www.copasi.org/

• BioNetS: BioNetS [2] is capable of performing full discrete simulations using an
efficient implementation of the Gillespie algorithm. It is also able to set up and solve
the chemical Langevin equations, which are a good approximation to the discrete
dynamics in the limit of large abundances. Finally, BioNetS can handle hybrid
models in which chemical species that are present in low abundances are treated
discretely, whereas those present at high abundances are handled continuously.
Availability: http://x.amath.unc.edu:16080/BioNetS/

• Stochkit (Prof. L. Petzold) [60]: Stochkit contains the popular Gillespie algorithm,
but also the tau-leaping and variants of this method. Stochkit also provides some
basic tools to verify the accuracy of a stochastic solver, given the inherently random
nature of stochastic simulation.
Availability: http://www.engineering.ucsb.edu/∼cse/StochKit/

• StochSim (Prof. D. Bray) [66, 79]: StochSim provides a general purpose biochem-
ical simulator in which individual molecules or molecular complexes are represented
as individual objects. Reactions between molecules occur stochastically, accord-
ing to probabilities derived from known rate constants. An important feature of
the program is its ability to represent multiple post-translational modifications and
conformational states of protein molecules.
Availability: http://www.pdn.cam.ac.uk/groups/comp-cell/StochSim.html

• Dizzy (Prof. H. Boulouri) [88]: Dizzy is a software tool for stochastically and
deterministically modeling the spatially homogeneous kinetics of integrated large-
scale genetic, metabolic, and signaling networks. Notable features include a mod-
ular simulation framework, reusable modeling elements, complex kinetic rate laws,
multi-step reaction processes, steady-state noise estimation, and spatial compart-
mentalization.
Availability: http://magnet.systemsbiology.net/software/Dizzy/

• MATLAB: Ullah et al [118] provide a set of MATLAB tools for dynamical modeling
of biochemical networks:
Availability: www.sbi.uni-rostock.de/publications matlab-paper.html
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4 Applications

4.1 Gene expression

Thattai and van Oudenaarden [113] proposed the following model for the single gene
expression:

The four steps of this simple model are the transcription (reaction 63), mRNA degradation
(reaction 64), translation (reaction 65), and protein degradation (reaction 66):

[Gene (G)]
k1−→ mRNA (R) (63)

mRNA (R)
k2−→ (64)

[mRNA (R)]
k3−→ Protein (P) (65)

Protein (P)
k4−→ (66)

The brakets indicate that these compounds are not consumed in the reaction.

We can directly see that the dynamics of mRNA is independent from the dynamics of
protein. In the deterministic case, mRNA reaches a steady state equal to

RSS = k1/k2

At the steady state, the protein level however depends on mRNA and is equal to

PSS = k3RSS/k4 = k3k1/k2k4

Stochastic simulation of this model reveals fluctuation at the level of both mRNA and
protein (Fig. 16), but with different characteristics. At steady state, the number of
mRNA molecules equilibrates independently of the protein molecules and reach a Poisson
distribution with a mean k1/k2. The synthesis rate of proteins, however, depends on the
number of mRNA molecules present. Protein numbers have a distribution that is much
broader than Poisson. The analysis of this model is left as an exercise.

This model and its variants were used to assess the relative role of transcription and
translation on the overall noise, the role of auto-regulation, and the propagation of noise
in genetic networks [113].
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Figure 16: Gene expression (Thattai - van Oudenaarden model): stochastic simulation
and steady state distributions of mRNA and protein. Bottom panel: theoretical Poisson
distribution. The green lines on the top panels correspond to the deterministic steady
state. Parameters: k1 = 0.01, k2 = log(2)/τr, k3 = bk2, k4 = log(2)/τp, τr = 120,
τp = 3600, b=2. τr and τp are the half-life of the mRNA and protein respectively, and b
is the burst factor (see [113]).
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Transcriptional bursting

We consider here an extended version of the previous model, where we explicitely describe
the activation and inactivation forms of the gene [58]. The “activity’ of a gene can be
controlled by multiple factors: chromatin remodeling, DNA methylation, or the binding
of transcription factors (which can act as activators or repressors). The activity of the
gene (i.e. its ability to be transcribed) depends on the state of the promoter.

Here we assume that the gene (promoter) stochastically switches between an active state
(e.g. bound to a transcriptional activator) and an inactive state (e.g. unbound):

We further assume that the binding/unbinding of the transcription factor occurs randomly
and with the same rate (kb = ku). If these rates are very fast, the system behaves like in
the previous scheme, where gene activity is constant and equal to the average of the gene
activity here (Fig. 17). If the binding/unbinding rates are slow, then transcription occurs
through bursts, a phenomenon called “transcriptional bursting” (Fig. 18). (See [22] and
[108] for experimental characterization of the transcriptional bursting).
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Figure 17: Gene expression with fast gene activation/deactivation. Parameters: kb =
ku = 100, k1 = 1, k2 = 0.01, k3 = 1, k4 = 0.1.
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Figure 18: Gene expression and transcriptional bursting. Parameters: kb = ku = 0.01,
k1 = 3, k2 = 0.03, k3 = 1, k4 = 0.1.
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4.2 Isomerization

Proteins undergo reversible modifications such as conformational changes (isomerization)
or post-translational modifications (e.g. phosphorylations). We discuss here the stochastic
dynamics of such system in the most simple case where the protein is not involved in other
reactions and where no regulator is involved.

A
k1
#
k2

B (67)

dA

dt
= − k1A + k2B (68)

dB

dt
= k1A − k2B (69)

with N = A + B is constant

Steady state:

As =
k2N

k1 + k2
(70)

Bs =
k1N

k1 + k2
= N − As (71)

Master Equation [89, 41]:

∂P (a, b)

∂t
= k1(a+1)P (a+1, b−1)+k2(b+1)P (a−1, b+1)−k1aP (a, b)−k2bP (a, b) (72)

It can be shown that the solution of the this at steady state is (the demonstration is left
as an exercise):

P (a) =

(

n

a

)

ka
1k

b
2

(k1 + k2)n
(73)

with n = a + b molecules.

Fokker-Planck Equation [89, 41]:

∂P (a, b)

∂t
=

∂

∂a
(P (a, t)(k1a − k2n + k2a)) +

1

2

∂2P (a, b)

∂a2
(P (a, t)(k1a + k2n − k2a)) (74)
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Figure 19: Isomerization. Parameters: k1 = k2 = 1, N = 200 (top) or N = 40 (bottom).
The red cuve corresponds to the theoretical prediction (72) (redone from [89]).

43



4.3 Michaelis-Menten

Based on experimental observations, Michaelis and Menten (1913) have proposed the
following mechanism for the enzyme-catalysed biochemical reactions (C=complex between
E and S):

E + S
k1
#
k−1

C
k2→ E + P (75)

The evolution equation for the different species follow the mass action law:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS

dt
= −k1ES + k−1C

dE

dt
= −k1ES + k−1C + k2C

dC

dt
= k1ES − k−1C − k2C

dP

dt
= k2C

(76)

The temporal evolution of the substrate S and the product P governed by these deter-
ministic equations is illustrated in fig. 20.

In the stochastic version, we have to consider each reaction step and to associate to each
of them a certain probability (reaction rate). The probability table for the model 75 is:

r reaction reaction propensity

1 E + S
k1−→ C w1 = k1ES/Ω

2 C
k−1−−→ E + S w2 = k−1C

3 C
k2−→ E + P w3 = k2C

As defined above, Ω is the system size. It appears here in the bimolecular reaction 1.
Note that Ω can also appear in the initial conditions to convert the initial concentrations
into the initial number of molecules.

The master equation corresponding to this system is given by:

∂P (S, C, E; t)

∂t
= − (k1SE + (k−1 + k2)C)(P (S, C; t))

+ k1(S + 1)(E + 1)P (S + 1, C − 1; t)

+ k−1(C + 1)P (S − 1, C + 1; t)

+ k2(C + 1)P (S, C + 1; t) (77)

The result of the simulation of this stochastic system (Gillespie method, with Ω = 100) is
illustrated in fig. 20. Note that in this formulation, the variables are expressed in terms
of the number of molecules.
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Figure 20: Michaelis-Menten kinetics: deterministic versus stochastic simulation. Param-
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Quasi-steady state approximation

When the concentration of substrate is much larger than the enzyme concentration, one
may use the quasi-steady-state approximation for the enzyme-substrate complex C to
derive the rate law for the enzymatic reaction (75). If we assume E << S0, where S0

denotes the initial or average concentration of S, then dC/dt = 0 and one obtains the
approximation

C =
ET S

k−1 + k2

k1
+ S

(78)

where ET = E + C is the total (constant) concentration of the enzyme.

The product P of the reaction is thus produced at a rate

v =
dP

dt
= k2C = Vmax

S

KM + S
(79)

where

Vmax = k2ET and KM =
k−1 + k2

k1

Rao and Arkin [90] showed that we can equivalently apply the quasi-steady-state approx-
imation to the chemical master equation. In this case, we can use the Michalis-Menten
function as the probability for the reaction S → P , and the probability table can thus be
reduced to:

r reaction reaction propensity

1 S
v−→ P w1 = VmaxΩ

S

KSΩ + S

Because the fast reactions E + S # C are extremely time-consuming (many occur-
rences in a given time interval), using this approximation is often a important gain of
computational time. More generally, Bundschuh et al. [17] show that similar approxi-
mations can be reasonably used to elimitate fast reactions. Haseltine and Rawlings [48]
propose to approximate fast reactions by deterimistic or Langevin equations and to treat
slow reaction as stochastic.
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Single enzyme kinetics

The stochastic version of the Michaelis-Menten reactional scheme allows to take into
account the fluctuations present when the number of enzyme molecules is relatively small.
The stochastic theory can even be applied to explore the dynamics of single-enzyme
systems. In these cases, stochastic fluctuations can have important consequences on
the activity of enzymes, which may be propagated to the phenotypic properties of cells
[99, 100].

In Figure 21 we simulated the same system (76) but with a number of enzyme fixed to
1 and a constant level of substrate. E and C thus switch stochastically between 0 and 1
and the number of product molecules increases step-wise.

This model allows us to simulate properties like the distribution of turnover times (Fig.
22). Interestingly, whereas the master equation (77) is of limited use, it can here be applied
in a simplified form enabling a theoretical derivation of the distribution of turnover times
[64, 100].

Defining the state vector X = (E, C) with E +C = 1, the master equation governing the
time evolution of the probability P (X, t) writes:

dP (1, 0, t)

dt
= k2P (0, 1, t) + k3P (0, 1, t)− k1SP (1, 0, t)

dP (0, 1, t)

dt
= k1SP (1, 0, t)− (k2 + k3)P (0, 1, t) (80)

Note that these equations are actually independent of the number of product molecules.

Starting with initial condition (0, 1), the probability that a product molecule is formed
after a time τ can be shown to be given by the following distribution:

f(τ) =
a(e(−c+b)τ/2 − e(−c−b)τ/2)

b
(81)

with

a = k1k3S

b =
√

−4k1k3S + (k2 + k3 + k1S)2

c = k2 + k3 + k1S (82)

The mean turnover time is given by

< τ >=

∫ ∞

0

τf(τ)dτ =
k2 + k3 + k1S

k3k1S
=

KM + S

vmaxS
(83)

We thus identify the Michaelis-Menten constant KM =
k2 + k3

k1
and the maximal enzyme

rate vmax = k3ET = k3(E + C) = k3. Hence the mean turnover time is equal to the
inverse of the catalysis rate of the enzyme as described by the standard Michaelis-Menten
equation.

This theoretical distribution is plotted and compared to the simulated data in Fig. 22.

Similar derivations can be applied to more complex enzymatic reactional schemes (for a
review, see [100]).
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4.4 Brusselator

The Brusselator (proposed in 1967 in Brussels by R. Lefever I. Prigogine et G. Nicolis)
is probably the first mathematical model proposed to explain the mechanism of chemical
oscillations as observed in the famous Belousov-Zhabotinsky reaction. Since then, this
model serves as a prototype model to study many dynamical properties of oscillatory
systems, including the effect of noise. The proposed chemical reaction scheme is the
following (note the three-molecular reaction in step 3):

r reaction reaction rate dX/dt dY/dt

1 A
k1−→ X v1 = k1A +v1 0

2 B + X
k2−→ Y + C v2 = k2BX −v2 +v2

3 2X + Y
k3−→ 3X v3 = k3X2Y +v3 −v3

4 X
k4−→ D v4 = k4X −v4 0

Assuming that A, B, C and D are constant (because present in excess for example), the
evolution equations for X and Y are given by

⎧

⎪

⎨

⎪

⎩

dX

dt
= k1a − k2bX + k3X2Y − k4X

dY

dt
= k2bX − k3X2Y

(84)

The temporal evolution of the reactants X and Y governed by these deterministic equa-
tions is illustrated in Fig. 23 (top panel).

In the stochastic version, we have to consider each reaction step and to associate to each
of them a certain probability (reaction propensities). The probability table for this model
is:

r reaction reaction propensity c ↔ k

1 A
k1−→ X w1 = c1A c1 = k1

2 B + X
k2−→ Y + C w2 = c2BX c2 = k2/Ω

3 2X + Y
k3−→ 3X w3 = c3X(X − 1)Y/2 c3 = 2k3/Ω2

4 X
k4−→ D w4 = c4X c4 = k4

Again, Ω is the system size and appears in the two-molecular reaction step 2 and in the
three-molecular reaction step 3.

The master equation corresponding to this system is given by:

∂P (X, Y ; t)

∂t
= − (c1A + c2BX + c3X

2Y + c4X)P (X, Y ; t)

+ c1AP (X − 1, Y ; t)

+ c2B(X + 1)P (X + 1, Y − 1; t)

+ c3(X − 1)(X − 2)(Y + 1)P (X − 1, Y + 1; t)

+ c4(X + 1)P (X + 1, Y ; t) (85)
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The result of the simulation of this stochastic system (Gillespie method, with Ω = 1000
and Ω = 100) is illustrated in Fig. 23 (middle and bottom panels).
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Figure 23: Brusselator: deterministic versus stochastic simulation. Parameters: k1 =
k2 = k3 = k4 = 1, a = 2, b = 5.2.
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Quantification of the effect of noise

Clearly, the noise for Ω = 100 has more effect on the oscillations than for Ω = 1000. How
to quantify this effect? We present here two measures:

• Histogram of period. Since the stochasticity induces fluctuations in the period,
a straightforward measure of the impact of noise consists of plotting the histogram
of the peak-to-peak (“period”) intervals, and to calculate the standard deviation of
this distribution. Bigger is the influence of the noise on the system, larger is the
standard deviation. Although this measure is relatively intuitive, the estimation
of the peak-to-peak intervals from the stochastic time serie is not trivial. It is for
example not easy to determine the maxima of the stochastic time series since they
occur extremely often due to the fluctuations. An alternative could be to take the
time at which a variable crosses upwards (of downwards) its mean value (nevertheless
even in this case some corrections to discard small fluctuations around the crossing
point might be necessary). Note also that to have a good statistics, relatively long
time series (for ex. 1000 periods) should be used.

• Auto-correlation function. Another commonly used measure is the auto-correlation
function. This function C(τ) measures the correlation of a time series with itself
shifted by an time lag τ as a function of τ . By definition, auto-correlation function
of a signal x(t) is:

C(τ) =
1

T − τ

∫ T−τ

0

x(t)x(t + τ)dt (86)

For discrete time series of limited size (N points), as generated by the stochastic
simulations, this formula becomes:

C(m) =
1

N − m

N−m−1
∑

n=0

x(n)x(n + m) (87)

For a perfectly periodic time serie (such as the one generated by a deterministic
model), the auto-correlation C(τ) is periodic (with the same period as the time
series) and reaches 1 at each period because after a shift of one period, the time
series is again fully correlated with itself. For stochastic time series, however, the
auto-correlation C(τ) oscillates but its envelop C̃(τ) decreases exponentially with
the time, reflecting the loss of phase memory. This phenomenon is called phase
diffusion. The damping rate of the auto-correlation function, measured by the half-
life time (i.e. the time required to reach C̃(τ) = 0.5) is a measure of the impact of
noise. Bigger is the influence of the noise on the system, shorter is the half-life time.
Again, to have a good statistics, relatively long time series (for ex. 1000 periods)
should be used and time interval between the data points should be constant.

These two measures have been applied to the Brusselator model, both for the deterministic
and stochastic time series (fig. 24).

Interestingly, when we plot the half-life time as a function of the system size, Ω or the
standard deviation of the period distribution as a function of 1/

√
Ω, we observe for large

value of Ω a linear relationship (fig. 25). This property is characteristic of non-linear
systems perturbed by a white noise [36].
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Figure 24: Brusselator: Quantification of the effect of noise. Upper row: deterministic,
middle row: Ω = 1000, bottom row: Ω = 100.
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Figure 25: Brusselator: Quantification of the effect of noise.
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4.5 Schlögl model

The Schlögl model (originally proposed in 1972 by F. Schlögl) is a simple, 1-variable
chemical system displaying bistability:

r reaction reaction rate

1 A+2X
k1−→ 3X v1 = k1AX2

2 3X
k2−→ A+2X v2 = k2X3

3 X
k3−→ B v3 = k3X

4 B
k4−→ X v4 = k4B

Assuming that A and B are constant (because present in excess for example), the evolution
equations for X is given by

dX

dt
= k1AX2 + k2X

3 + k3X + k4B (88)

For appropriate parameter values, this system can present 3 steady states, 2 of them
being stable (bistability). Deterministic simulations shows that depending on the initial
condition, the system converges towards one or the other second stable state, the unstable
state playing the role of the separatrix.
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Figure 26: Deterministic simulation of the Schlögl model.

Stochastic simulation (by means of the Gillespie algorithm) of that system (cf. Table
here below) shows that if the level noise is sufficient high (i.e. the number of molecules
sufficiently small), the system can spontaneously switch from one steady state to the
other. The distribution of X is bimodal, but X has a strong preference to remain in the
lower steady state. This example shows that the robustness to molecular noise is not the
same for the 2 stable steady state.
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r reaction reaction propensity c ↔ k

1 A+2X
k1−→ 3X w1 = c1AX(X − 1)/2 c1 = 2k1/Ω2

2 3X
k2−→ A+2X w2 = c2X(X − 1)(X − 2)/3! c2 = 3!k2Ω2

3 X
k3−→ B w3 = c3X c3 = k3

4 B
k4−→ X w4 = c4B c4 = k4
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Figure 27: Stochastic simulation of the Schlögl model.

Figure 28: Schlögl model: schematic interpretation of the robustness.
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4.6 Lotka-Volterra

In 1925, Lotka and Volterra proposed one of the first models to describe the dynamics
resulting from the interactions between predators and preys. This model constitutes the
basis of numerous models used today in the analysis of population dynamics.

Here we will deal with original, two species model, but it should be kept in mind that
Lotka-Volterra models may be extended to much more species in interaction. Moreover
these equations can be used for multi-species competition (including molecular) models.

We denote X the prey, and Y the predator. We assume that the death of the prey is
only due to the predation, i.e. the more abundant the predator, the faster the death of
the prey and the birth of the predator. We also assume that the birth rate of the prey is
linear and that the (natural) mortality rate of the predators is also linear.

The time evolution of X and Y are then given by the following equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dX

dt
= αX − βXY

dY

dt
= γXY − δY

(89)

Under appropriate conditions, sustained oscillations of the prey and predator population
are observed. Note that these oscillations are not of limit-cycle type. Their amplitude
depends on initial numbers of preys and predators.

When this system is simulated stochastically, high variation in the level of the two species
is observed. This is because there is no attractive limit-cycle that contracts the trajec-
tories. An other effect of noise, not observed in the deterministic model is that it could
happen that through random fluctuations all the predators die. In this case the species
is extincted and the happy preys can exponentially multiply.
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Figure 29: Lotka-Volterra: Deterministic versus stochastic simulation. Parameters: α =
β = γ = δ = 1, Ω = 100.
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4.7 Fitzhugh-Nagumo

The Fitzhugh-Nagumo model is a simple example of a two-dimensional excitable system.
It was proposed as a simplication of the famous model by Hodgkin and Huxley to describe
(phenomenologically) the response of an excitable nerve membrane to external current
stimuli. Important features, also found in experiments on real neurons, are the inclusion
of a recovery mechanism and the existence of different refractory states after excitation,
as well as states of enhanced and depressed excitability depending on the time course of
external stimulation (see review by Lindner et al. [68]).

A stochastic version of the Fitzhugh-Nagumo model was studied for the first time by
Treutlein and Schulten [68]. There the notion of noise-induced limit cycles was introduced
in this model. Driving the Fitzhugh-Nagumo model by white noise or by an external signal
became popular during the 1990s in the context of stochastic resonance.

One common representation of the stochastic Fitzhugh-Nagumo model is given by:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϵdx

dt
= f(x) − y

dy

dt
= γx − βy + b − s(t) +

√
2Dξ(t)

(90)

The two non-dimensional variables x and y are a voltage-like and a recovery-like variable,
or in the terminology of physical chemists and biologists an activator and an inhibitor
variable, respectively. Function s(t) is a periodic signal and

√
2Dξ(t) is a white Gaussian

noise with intensity D. In neuronal models, the time scale ratio ϵ is much smaller than
one (ϵ ≈ 10−2), implying that x(t) is the fast and y(t) is the slow variable. The nonlinear
function f(x) (shaped like an inverted N, as shown in figure 2) is one of the nullclines of
the deterministic system; a common choice for this function is

f(x) = x − ax3 (91)

In the excitable regime of the Fitzhugh-Nagumo model, this nullcline intersects only once
with the linear nullcline of the y dynamics. The intersection point is a stable fixed point
on the left branch of the cubic nullcline the resting state of the system. Sufficiently strong
perturbations (either in x or in y) result in a large excursion in phase space along the right
branch of f(x) (“firing” of the neuron), and back along the upper left branch (“neuronal
refractory state”) into the rest state. In fig. 31 (left, up) this trajectory is shown for the
deterministic system started at an appropriate initial condition, caused, for instance by
an external stimulation. The time course of x(t) (fig. 31, left, bottom) the excursion in
the phase plane appears as a spike.

The excitation process that was in the deterministic case due to the initial condition,
occurs repeatedly if noise is present (D > 0). This is shown in fig. 31 (right, up),
which illustrates a stochastic trajectory in phase space and the corresponding time series
x(t) (31, right, bottom). The random force occasionally kicks the phase point out of
the vicinity of the stable fixed point towards the region labeled “self-excitatory”. The
sequence of action potentials resembles the spontaneous activity of a neuron.

Such noise-induced oscillations are commonly observed in excitable systems (see also [80])
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Figure 30: Fitzhugh-Nagumo model: deterministic versus stochastic simulation. Param-
eters: ϵ = 0.01, b = 0.6, β = 1, a = 1, γ = 1.5, and D = 0.01.
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Figure 31: Stochastic coherence in the Fitzhugh-Nagumo model (source: scholarpedia).
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5 Appendixes

5.1 Solving the master equation

Solving analytically the master equation is not an easy affair. Of course, this problem
can be solved by finding numerical solution. Solving numerically the master equation can
begin tiresome when the reaction process involve many species.

A small example

Consider the following system

A + B
k1→ C. (92)

Then,

∂P (XA, XB, t)

∂t
= w1(XA + 1, XB + 1)P (XA + 1, XB + 1, t)

− w1(XA, XB)P (XA, XB, t) (93)

To solve this equation, we will need to compute recursively for t = t0, · · · , tf ,

P (XA, XB, t0), P (XA, XB, t1), · · · , P (XA, XB, tf) (94)

for XA = 0, 1, · · · , NA and XB = 0, 1, · · · , NB.
That means (NA + 1) · (NB + 1) · (f +1) different probabilities. The Euler approximation
of the master equation is

P (XA, XB, t + τ) ≈ P (XA, XB, t) + τ
∂P (XA, XB, t)

∂t
(95)

for τ small enough.
A time t0, the number of molecule of A and B is known and equal to X0

A, X0
B. So

P (XA, XB, t0) = δXA,X0
A
δXB ,X0

B
, (96)

where δa,b = 1 if a = b and δa,b = 0 if a ̸= b. Therefore, the time evolution of P (X0
A, X0

B, t)
can be computed recursively by

P (X0
A, X0

B, t + τ) ≈ P (X0
A, X0

B, t) + τ
∂P (X0

A, X0
B, t)

∂t
. (97)

⋆ For X0
A, X0

B :

we have a1(XA, XB) = c1XAXB, so

P (X0
A,X0

B , t0) = 1

P (X0
A,X0

B , t0 + τ) = 1 − τc1X
0
AX0

B

P (X0
A,X0

B , t0 + 2τ) = P (X0
A,X0

B , t0 + τ) + τ
∂P (X0

A,X0
B , t + τ)

∂t
|t0

...

P (X0
A,X0

B , t0 + nτ) = · · · (98)
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⋆ For X0
A − 1, X0

B :

P (X0
A − 1,X0

B , t0) = 0

P (X0
A − 1,X0

B , t0 + τ) = 0
...

P (X0
A,X0

B , t0 + nτ) = 0 (99)

⋆ For X0
A − 1, X0

B − 1 :

P (X0
A − 1,X0

B − 1, t0) = 0

P (X0
A − 1,X0

B − 1, t0 + τ) = τc1XAXB

...

P (X0
A,X0

B , t0 + nτ) = · · · (100)

We can use marginal probabilities to solve this problem. In fact

P (XA, t + τ) =
NB
∑

XB=0

P (XA, XB, t + τ),

=
NB
∑

XB=0

[

P (XA, XB, t) + τ
∂P (XA, XB, t)

∂t

]

,

=
NB
∑

XB=0

[

P (XA, XB, t) +

τw1(XA + 1, XB + 1)P (XA + 1, XB + 1, t)−

τw1(XA, XB)P (XA, XB, t)

]

, (101)

where P (XA, XB ≥ NB, t) = 0. The marginal probability takes into account the combi-
natory between XA, XB. That enables computing directly the probability of P (XA, t+ τ),
for any XA regardless XB.

Implementing this formula will need a good numerical management of all the P (XA, XB, t)
to optimized the computation time. Equation

P (XA, XB, t) = P (XA + 1, XB + 1, t − τ) · w1(XA + 1, XB + 1)τ

+ P (XA, XB, t − τ) · [1 − w1(XA, XB)τ ] (102)

which is an equivalent form of the master equation enables computing P (XA, XB, t) and
so ∂P (XA,XB ,t)

∂t . This equation use previous values of P (XA, XB, t − τ) computed at time
t − τ.
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5.2 Fokker-Planck Equation

1-variable

∂P (x, t)

∂t
= P (x − µ, t)w(x − µ) − P (x, t)w(x) (103)

µ << x ⇒ Taylor:

P (x − µ, t) = P (x, t) + µ
∂

∂x
P (x, t) +

1

2
µ2 ∂2

∂x2
P (x, t)

w(x − µ) = w(x) + µ
∂

∂x
w(x) +

1

2
µ2 ∂2

∂x2
w(x) (104)

∂P (x, t)

∂t
=

[

P (x, t) + µ
∂

∂x
P (x, t) +

1

2
µ2 ∂2

∂x2
P (x, t)

] [

µ
∂

∂x
w(x) +

1

2
µ2 ∂2

∂x2
w(x)

]

− P (x, t)w(x)

= P (x, t)µ
∂

∂x
w(x) + µ

∂

∂x
P (x, t)w(x) + P (x, t)

1

2
µ2 ∂2

∂x2
w(x)

+ w(x)
1

2
µ2 ∂2

∂x2
P (x, t) + µ2 ∂

∂x
P (x)

∂

∂x
w(x) + O(µ3)

= µ
∂

∂x
(w(x)P (x, t)) +

1

2
µ2 ∂2

∂x2
(w(x)P (x, t)) (105)

N-variable

∂P (X, t)

∂t
=

R
∑

r=1

[wr(X − ηr)P (X − ηr, t) − wr(X)P (X, t)] (106)

Taylor

f(x) = f(x0)+(x−x0)f
′(x0)+

(x − x0)2

2!
f ′′(x0)+· · ·+

(x − x0)n

n!
f (n)(x0)+O((x−x0)

n+1) (107)

If x = x0 + ϵ

f(x0 + ϵ) = f(x0) + ϵf ′(x0) +
ϵ2

2!
f ′′(x0) + · · · +

ϵn

n!
f (n)(x0) + O((x − x0)

n+1) (108)

Here, if we assume ηr << X,

wr(X − ηr) = wr(X) − ηr

∂

∂X
wr(X) +

ηr
2

2

∂2

∂2X
wr(X) + ...

≈ wr(X) − ηr

∂

∂X
wr(X) (109)
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P (X − ηr, t) = P (X, t) − ηr

∂

∂X
P (X, t) +

ηr
2

2

∂2

∂2X
wr(X) + ... (110)

≈ P (X, t) − ηr

∂

∂X
P (X, t) (111)

Thus

∂P (X , t)

∂t
=

R
∑

r=1

[

(

wr(X) − ηr
∂

∂X
wr(X)

)(

P (X, t) − ηr
∂

∂X
P (X, t)

)

− wr(X)P (X, t)

]

(112)

∂P (X, t)

∂t
=

R
∑

r=1

[

− ηrwr(X)
∂

∂X
P (X, t) − ηrP (X, t)

∂

∂X
wr(X)

+ ηrηr
T

(

∂

∂X
wr(X)

)T ( ∂

∂X
P (X, t)

)

]

(113)

∂P (X , t)

∂t
=

R
∑

r=1

[

−
∂

∂X
(ηrwr(X)P (X, t)) + ηrηr

T

(

∂

∂X
wr(X)

)T ( ∂

∂X
P (X, t)

)

]

(114)

∂P (X , t)

∂t
=

R
∑

r=1

[

−
∂

∂X
(ηrwr(X)P (X , t)) + ηrηr

T
∑

i,j

∂2

∂XiXj
(wr(X)P (X , t))

]

(115)

∂P (X , t)

∂t
=

R
∑

r=1

[

−
∑

i

∂

∂Xi
(ηrwr(X)P (X , t)) + ηrηr

T
∑

i,j

∂2

∂XiXj
(wr(X)P (X , t))

]

(116)

∂P (X , t)

∂t
= −

∑

i

∂

∂Xi

[(

R
∑

r=1

ηrwr(X)

)

P (X, t)

]

+
∑

i,j

∂2

∂XiXj

[(

R
∑

r=1

ηrηr
T wr(X)

)

P (X , t)

]

(117)

Fokker-Planck:

∂P (X, t)

∂t
= −

∑

i

∂

∂Xi

[

F (X)P (X, t)

]

+
∑

i,j

∂2

∂XiXj

[

G(X)P (X, t)

]

(118)

with

F =

(

R
∑

r=1

ηrwr(X)

)

G =

(

R
∑

r=1

ηrηr
T wr(X)

)

(119)
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5.3 Gillespie algorithm: Time to the next reaction

Given the state (X1, · · · , XN) at time t, let denote by P (τ, µ)dτ the probability to that
the next reaction will occur in the time interval [t+τ, t+τ +dτ ] and will be a Rµ reaction.
P (τ, µ)dτ is thus the probability that

• no reaction will occur during [t, t + τ ] and

• Rµ will occur in the interval [t + τ, t + τ + dτ ].

The probability that Rµ will occur in the interval [t + τ, t + τ + dτ ] is equal to

P (Rµ, [t + τ, t + τ + dτ ]) = wµdτ (120)

Denote by P0(τ) the probability that no reaction will occur during [t, t + τ ]. Then

P0(τ
′ + dτ ′) = P0(τ

′)(1 − CRdτ ′) (121)

with CR =
∑

r wr. Indeed the probability to have no reaction in [t, t+ τ ′ +dτ ′] is equal to
the probability to have no reaction in [t, t+ τ ′] (= P0(τ ′)) multiplied by the probability to
have no reaction in [t+τ ′, t+τ ′+dτ ′]. (= 1−CRdτ ′). Notice that CRdτ ′ is the probability
to have one reaction in a time interval [t + τ ′, t + τ ′ + dτ ′]. Therefore,

P0(τ ′ + dτ ′) − P0(τ ′)

dτ ′
= −CRP0(τ

′),

⇒ P0(τ
′) = exp (−CRτ ′), when dτ ′ → 0.

We deduce that

P (τ, µ)dτ = P0(τ) · P (Rµ, [t + τ, t + τ + dτ ])dτ, (122)

= wµ exp (−CRτ)dτ. (123)

Finally

P (τ, µ) = wµ exp (−CRτ). (124)

Thus the time till the next reaction takes place is distributed according to:

P (τ) = CR exp (−CRτ). (125)
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5.4 Generating random numbers according to a given distribu-
tion

The probability to have the next reaction after time τ is given by Eq. (48):

P (τ) = CR exp(−CRτ) (126)

When implementing the Gillespie algorithm we need to generate τ in such a way that the
τ distribution follows Eq. (126). However most programs - like matlab - have built-in
functions to generate random number from a uniform distribution between 0 and 1. We
present here the inversion method which allows to construct random numbers according
to “any” prescribed probability density function (see also Appendix of Gillespie, 1976
[37]).

Let’s define

P (x) = probability density function

P (s)ds = probability that s lies between s and s + ds (127)

Consider the following function (called the probability distribution function):

F (x) =

∫ x

−∞

P (s)ds (128)

Thus F (x0) is the probability that x < x0

Notice that

F (−∞) = 0

F (+∞) = 1 (129)

The inversion method for generating a random value x according to a given density
function P (x) consists of drawing a random number r from the uniform distribution in
the unit interval and take for x the value that satisfy F (x) = r, i.e. x = F−1(r) where
F−1 is the inverse of the distribution function corresponding to a given density function.

65



Let’s apply this to our probability density function (126):

P (x) = A exp(−Ax) for 0 ≤ x ≤ ∞
= 0 otherwise (130)

where A is positive constant (=CR in the Gillespie algorithm).

The corresponding probability distribution function is:

F (x) =

∫ x

−∞

P (s)ds

=

∫ 0

−∞

P (s)ds +

∫ x

0

P (s)ds

=

∫ x

0

A exp(−As)ds

= A

[

−
1

A
exp(−As)

]x

0

= A

[

−
1

A
exp(−Ax) +

1

A

]

= 1 − exp(−Ax) (131)

Let’a now assume that we generate a random value r, statistically equivalent to 1 − r

F (x) = r ≡ 1 − r (132)

Then

1 − r = 1 − exp(−Ax)

r = exp(−Ax)

−Ax = ln(r)

x = −
1

A
ln r

x =
1

A
ln

1

r
(133)
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5.5 Chemical Langevin Equation

Tau-leap approximation

The Chemical Langevin Equation was derived by Gillespie (2001) from the tau-leap ap-
proximation. In this method, the system is “advanced” by a pre-selected time step τ
during which several reactions take place. In practice, τ should be sufficiently small to
ensure that the propensity functions do not change significantly (“τ -leap” condition).

Let’s define the Poisson random variable P(w, τ) as the number of reactions that will
occur in time τ given that wdt is the probability that a reaction will occur in any in-
finitesimal time dt. Then, under the τ -leap condition, the system can be “advanced”
by:

X(t + τ) = X(t) +
R
∑

r=1

ηrPr(wr(X(t)), τ) (134)

where X is the vector of the number of molecule of each type, R the number of chemical
reactions, ηr is the vector of stochiometric coefficient of each compound in reaction r, wr

is the propensity of reaction r.

To simulate this system we thus need to generate, at each time step, R Poisson random
numbers. The simulation will be much faster the the exact stochastic algorithm (SSA)
if several reactions take place during τ . The choice of τ is thus critical. It needs to
be sufficiently small to satisfay the τ -leaping condition but large enough to benefit with
respect to SSA. This approximation is thus valid when the noise if not too large (i.e. when
the number of molecules is relatively large).

From the tau-leap approximation to the Chemical Langevin Equation

Further approximations stem from the following mathematical property: The Poisson
random variable P(w, τ), which has a mean and variance wτ can be well approximated
when wτ >> 1, by the Normal random variable with the same mean and variance.
Denoting the Normal random variable with the mean µ and variance σ2 as Nr(µ, σ2), we
obtain:

Pr(wr(X(t)), τ) = wr(X(t))τ +
√

wr(X(t))τNr(0, 1)

= Nr(wr(X(t))τ, wr(X(t))τ) (135)

NB: The second line follows from the fact that:

N (µ, σ2) = µ + σN (0, 1) (136)

Inserting Eq. (135) in Eq. (134) gives:

X(t + τ) = X(t) +
R
∑

r=1

ηrwr(X(t))τ +
R
∑

r=1

ηr

√

wr(X(t))τNr(0, 1)

= X(t) + τ
R
∑

r=1

ηrwr(X(t)) +
√

τ
R
∑

r=1

ηr

√

wr(X(t))Nr(0, 1) (137)
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This equation is called the Langevin leaping formula (Gillespie, 2001). It expresses the
state increment X(t + τ) − X(t) as the sum of two terms a deterministic drift term,
proportional to τ , and a fluctuating term, proportional to

√
τ .

Note that by replacing the integer-values Poisson random variable by a real-valued Normal
random variable, we have converted the discrete system into a continuous one.

If we now substract X(t) in both sides and take the limit τ → 0, we obtain the following
stochastic equation:

dX

dt
=

R
∑

r=1

ηrwr(X(t)) +
R
∑

r=1

ηr

√

wr(X(t))Γr(t) (138)

where Γr is a Gaussian white noise:

Γr(t) = δrr′δ(t − t′) (139)

where the first δ function is the Kronecker’s and the second is Dirac’s.

This is the Chemical Langevin Equation (sometimes referred to as CLE).

The standard way to solve Eq. (138) is to use the recurrence (137) for sufficiently small
τ .
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5.6 Brusselator: MATLAB code (Gillespie simulation)

omega=100; % system size
a=2;b=6; % model parameters
x=1; y=1; % initial conditions:
trans=0; tend=100; tech=0.01; % time

t=0; told=0; % initilisation
results=[];

while (t<tend+trans) % run simulation

w(1)=a*omega;
w(2)=b*x;
w(3)=x;
w(4)=x*(x-1)*y/omega^2;

c(1)=w(1);
for j=2:4;
c(j)=c(j-1)+w(j);

end
ct=c(4);

z1=rand();
z2=rand();

tau=(-log(z1))/ct;
uct=z2*ct;
t=t+tau;

if (uct < c(1))
x=x+1;

elseif (uct < c(2))
x=x-1;
y=y+1;

elseif (uct < c(3))
x=x-1;

elseif (uct < c(4))
x=x+1;
y=y-1;

end

if (t>trans) && (t>told+tech)
results=[results ; t x y];
told=t;

end

end

figure(1) % plot time serie
plot(results(:,1),results(:,2),’b’,results(:,1),results(:,3),’r’);
xlabel(’Time’)
ylabel(’X (blue), Y (red)’)
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