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Abstract

The Goodwin model is a 3-variable model demonstrating the emergence of oscillations in a delayed negative feedback-
based system at the molecular level. This prototypical model and its variants have been commonly used to model circadian
and other genetic oscillators in biology. The only source of non-linearity in this model is a Hill function, characterizing the
repression process. It was mathematically shown that to obtain limit-cycle oscillations, the Hill coefficient must be larger
than 8, a value often considered unrealistic. It is indeed difficult to explain such a high coefficient with simple cooperative
dynamics. We present here molecular models of the standard Goodwin model, based on single or multisite
phosphorylation/dephosphorylation processes of a transcription factor, which have been previously shown to generate
switch-like responses. We show that when the phosphorylation/dephosphorylation processes are fast enough, the limit-
cycle obtained with a multisite phosphorylation-based mechanism is in very good quantitative agreement with the
oscillations observed in the Goodwin model. Conditions in which the detailed mechanism is well approximated by the
Goodwin model are given. A variant of the Goodwin model which displays sharp thresholds and relaxation oscillations is
also explained by a double phosphorylation/dephosphorylation-based mechanism through a bistable behavior. These
results not only provide rational support for the Goodwin model but also highlight the crucial role of the speed of post-
translational processes, whose response curve are usually established at a steady state, in biochemical oscillators.
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Introduction

Biological rhythms are generated, at the cellular level, by
complex gene-protein interaction networks. Their molecular
mechanism is characterized by regulatory feedback loops and
non-linear dynamics [1]. Non-linearity typically arises from
Michaelis-Menten enzyme kinetics and cooperative processes.
Sigmoidal responses and sharp thresholds may result from the
cooperative binding of a substrate molecule to an enzyme or from
post-translational modifications, such as multisite phosphorylation
[2–4]. In some conditions, even a single, reversible phosphoryla-
tion can produce a step-like response [5]. Cooperative binding of
transcription factors to various sites of a gene promoter or the
formation of transcription factor multimers can account for non-
linearity in gene transcription [6].

Mathematical models for biological oscillators accomodate these
non-linear kinetics either explicitly (using detailed reactional
schemes built on mass action laws), or phenomenologically
(through Michaelis-Menten or Hill functions). The latter is often
privilegiated because detailed molecular mechanisms are generally
not known and because it greatly simplifies the models. Indeed,
relying - often implicitely - on quasi-steady state assumptions,
phenomenological models allow to relinquish fast-varying vari-
ables, thereby reducing the number of variables. Since the
numerical integration of detailed systems involving a mixture of
fast and slow processes may rapidely become prohibitive (CPU-
consuming, loss of numerical accuracy), simplifications are highly
desired. If appropriate assumptions are done, the reduced version

of a model is expected to yield consistent results with its detailed
version [7].

In 1965, Goodwin [8] proposed a phenomenological, 3-variable
model to show the possibility of oscillations in a simple delayed
negative feedback loop model. Synthesis and degradation rates are
linear, except the repression which takes the form of a sigmoidal
Hill curve. Griffith [9] demonstrated that limit-cycle oscillations
can be obtained only if the Hill coefficient n is larger than 8. Since
then, several theoretical works investigated the dynamical prop-
erties of this model [10–13].

The Goodwin model is a prototypical biological oscillator. It
was initially presented as an hypothetical genetic oscillator, in
which a protein represses the transcription of its own gene via an
inhibitor. This model was subsequently applied in the context of
circadian clocks [14,15] and somitogenesis [16]. Many models for
circadian clocks are closely related to the Goodwin model [17–19].
In particular, one variant of the Goodwin model, in which the Hill
function is replaced by an arbitrary 2-threshold ‘‘reset’’ function
[20,21], has been used to reproduce phase response curves and to
study temperature compensation in circadian systems.

The Goodwin model, however, is often criticized because of the
‘‘unrealistic’’ large value of the Hill coefficient n. Uses and misuses
of the Hill function is regularly revisited [22,23]. In enzyme
kinetics, this coefficient is usually interpreted as the number of
ligand molecules that an enzyme or a receptor can bind (in fact the
number of binding sites can be shown to be the upper limit of n
[22,24,25]). At the transcriptional level, Hill function can be
explained by the formation of repressor protein complexes or the
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cooperative binding of the repressor to the gene promoter [6]. All
these processes rarely yield Hill coefficients higher than 3 or 4.

On the other hand, several recent papers describe molecular
mechanisms that can account for sharp thresholds in protein
activation kinetics. Mechanisms based on protein sequestration or
multisite phosphorylation have been shown to produce sigmoidal
responses [2,3,26–29]. Cascades of post-translational modifica-
tions constitute another efficient mean to convert gradual inputs
into ultrasensitive responses, equivalent to cooperative enzymes
with large Hill coefficients [30]. Such a mechanism likely operates
in the MAPK signalling pathway [30], whose switch-like response
appears crucial for the cell fate in Xenopus oocytes [31].

The goal of the present work is to propose a molecular
mechanism of the standard and phase resetting Goodwin model
that could explain the switch-like behavior of the repression
process while keeping the oscillatory properties of the Goodwin
models. We here focus on three mechanisms based on phosphor-
ylation/dephosphorylation processes which have been shown to
generate switch-like responses: a multisite phosphorylation/
dephosphorylation mechanism which produces Hill-like response,
a single phosphorylation/dephosphorylation mechanism which
produces zero-order ultrasensitivity and a double phosphoryla-
tion/dephosphorylation mechanism giving rise to bistability.
When the phosphorylation/dephosphorylation processes are fast
enough, we show that the first two mechanisms can provide a
molecular validation of the standard Goodwin model, whereas the
third one can explain the phase resetting Goodwin model. In
particular, limit-cycle generated with the multisite phosphorylation
mechanism is in very good quantitative agreement with the
oscillations observed in the Goodwin model. The conditions on
the parameter values under which a good approximation of the
detailed and compact models can be achieved are also discussed.
More generally, our work provides a rational support for the use of
Hill kinetics in biochemical models and highlights the importance
of the speed of the underlying mechanisms explaining threshold
and bistable processes in the setting of oscillatory behavior.

Results

Limit-cycle Oscillations in the Goodwin Model
The Goodwin model [8,9] is a simple delayed negative feedback

loop model (Fig. 1). Its dynamics is governed by 3 ordinary
differential equations:

dX

dt
~k1

Kn
i

Kn
i zZn

{k2X ð1Þ

dY

dt
~k3X{k4Y ð2Þ

dZ

dt
~k5Y{k6Z ð3Þ

The variables X , Y and Z can be interpreted as the
concentration of a given gene mRNA, the corresponding protein,
and a transcriptional inhibitor, respectively. The feedback loop is
achieved by the repression exerted by the inhibitor to the mRNA
synthesis and is described by a Hill function:

f (Z)~
Kn

i

Kn
i zZn

ð4Þ

In 1968, Griffith [9] demonstrated that limit-cycle oscillations
can be obtained only if the Hill coefficient n is larger than 8. For
nƒ8, the model displays damped oscillations.

The Hill function and the limit-cycle oscillations obtained by
numerical integration of the Goodwin model are shown in Fig. 2.
For the parameter values chosen (n~10), Z remains always above
the threshold Ki and the oscillations are rather sinusoidal. When n
increases, we can make Z switching around Ki, inducing
relaxation oscillations [13]. The period of the oscillations can be
easily adjusted to a circadian value by a proper rescaling of the
time-dependent parameters.

In the following, our primary goal is to replace the Hill function
in Eq. (1) by a realistic molecular mechanism, namely a multisite
phosphorylation process, and to show that the Hill function is a
proper description of the kinetics of this mechanistic model, at
least under some conditions.

Multisite Phosphorylation
Post-translational modifications are crucial for the dynamics of

biochemical systems. By inducing conformational changes, protein
phosphorylation can regulate the catalytic or transcriptional
activity of the protein in a fast and efficient way. About 30% of
the proteins of an eukaryotic cell undergo phosphorylation, often
on several sites [32]. Phosphorylation on multiple sites of a protein
was reported in signaling pathways [32], but also in genetic
circuits, including circadian clocks [34,35] and the cell cycle
[36,37]. By generating sharp thresholds, multisite phosphorylation
can induce multiple steady states or favor the emergence of
oscillations. Multisite phosphorylation provides also a means to
adjust robustly the timing of cellular events [38].

We show here that Hill-like response curves can be readily
obtained in a multisite phosphorylation mechanism. [2] derived a
general expression for the kinetics of the phosphorylation/
dephosphorylation rates of a protein, in the case of ordered
multisite phosphorylation:

S0 /?
E

P

S1 /?
E

P

S2 /?
E

P

:::/?
E

P

Sn

In this scheme, a protein S, with n sites, can be found in various
forms Si, where i is the number of phosphorylated sites. Each
phosphorylation step (catalyzed by a kinase E) and dephosphor-
ylation step (catalyzed by a phosphatase P) are assumed to follow a
Michaelis-Menten mechanism:

EzSi /?
ka,i

kd,i

ESi

kc,i
EzSiz1 ð5Þ

PzSiz1 /?
k’a,i

k’d,i

PSiz1

k’c,i
PzSi ð6Þ

for i[ 0,1, . . . ,n{1f g. The time evolution of the concentration of
Si, ESi, and PSi are described by the following 3nz1 kinetic
equations:
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Figure 1. Scheme of the Goodwin model. In the original version of the model, the negative feedback exerted by Z on the synthesis of X is
described by a non-linear Hill function.
doi:10.1371/journal.pone.0069573.g001

Figure 2. Dynamics of Goodwin model. (A) Inhibitory Hill function (Eq. (4), with Ki~1 and n~10). (B) Limit cycle oscillations obtained by
numerical integration of Eqs. (1)–(3) for the following parameter values (arbitrary units): k1~k3~k5~1, k2~k4~k6~0:1, Ki~1, n~10. The
oscillation period is about 40 a.u. The dashed line indicates the Hill threshold Ki~1.
doi:10.1371/journal.pone.0069573.g002
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dS0

dt
~kd,0

:ES0{ka,0
:E:S0zk’c,0

:PS1

dSi

dt
~kc,i{1

:ESi{1zkd,i
:ESi{ka,i

:E:Sizk’c,i
:PSiz1

zk’d,i{1
:PSi{k’a,i{1

:P:Si

dSn

dt
~k’d,n{1

:PSn{k’a,n{1
:P:Snzkc,n{1

:ESn{1

dESi

dt
~ka,i

:E:Si{(kd,izkc,i):ESi

dPSi

dt
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ð7Þ

for i[ 0,1, . . . ,n{1f g. The total concentrations of protein S

(Stot~
P

i Siz
P

i ESiz
P

i PSi), kinase E (Etot~Ez
P

i ESi)

and phosphatase P (Ptot~Pz
P

i PSi) are constant, leading to
3n{2 independent equations.

Gunawardena (2005) then showed that the fraction of
maximally phosphorylated protein.

rn~
Sn

S0zS1zS2z:::zSn
ð8Þ

can be approximated by the Hill function:

rn&
un

1zun
ð9Þ

with u~E=P, providing some constraints on the kinetic param-
eters. E=P can be further approximated by Etot=Ptot with some
conditions on Stot, Ptot and Etot. The detailed calculations and the
conditions on parameter values can be found in Gunawardena [2]
and are summarized in Supplementary Material (Text S1, Section
A and Fig. S1).

Figure 3. Multisite phosphorylation. Comparison of the response curve of the full system and the Hill function for (A) n~4 and (B) n~10. The

blue curve gives the steady state value of Sact~
Xn{1

i~0
Si as a function of the ratio Etot=Ptot , obtained by numerical integration of Eqs. (7). The

parameter values are: d~0:01 (n~4), d~0:1 (n~10), ka,i~106 , k’a,i~106=d, kd,i~k’d,i~108 , kc,i~k’c,i~108 (for i~0,::n), except k’a,n~106=d1{n (for
the last dephosphorylation step), Stot~1, Ptot~1, Etot varies from 0 to 2. For the Hill function (red curve), Ki~1.
doi:10.1371/journal.pone.0069573.g003
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Since rn takes into account only the free forms of S, this
measure may not be appropriate to describe, for example, the
effective concentration of a transcription factor, as described later.
A more suitable fraction would be:

sn~
SnP

i
Siz

P
i

ESiz
P

i
PSi

~
Sn

Stot
ð10Þ

Following Gunawardena’s work, we derived constraints on the
parameter values to approximate rn by sn and alternative
constraints to those derived by Gunawardena to approximate
E=P by Etot=Ptot (see Text S1, Section B and Table S1). Notably,

these constraints do not impose small ratio of
Stot

Ptot
contrary to

Gunawardena’s conditions. In contrast, a large difference in the
kinetics of the last phosphorylation/dephosphorylation is suffi-
cient. More specifically, in our simulations we choose, for the last
dephosphorylation step a rate much faster than in the previous
dephosphorylation steps. Quantitative experimental data on
phosphorylation/dephosphorylation rates are very poor and we
did not find any evidence for such ‘‘last-step’’ cooperativity effect.
Since phosphorylation may affect the conformation and the
binding ability of proteins, it is not inconceivable that the fully
phosphorylated form of the protein affects its kinetics. This does
not exclude the possibility that other sets of parameter values also
lead to a good agreement.

Using theses constraints as a guide to tune the parameter values,
we successfully found parameter values that yield a steady state
response curve of sn as a function Etot=Ptot that accurately fits the
Hill curve, both for n~4 using a 4-site phosphorylation system
(Fig. 3A) and for n~10 using a 10-site phosphorylation system
(Fig. 3B). The kinetic constants satisfy the constraints derived by
Gunawardena. In particular, the kinetic parameter of the
phosphorylation and the dephosphorylations steps are the same,
except for the last step. Remark that we plotted
Sact~S0zS1zS2z:::zSn{1. In the following, we will always
take Stot~1, so that Sact represents as well the absolute or relative
concentration of the active form of the protein.

This result confirms that, upon appropriate assumptions,
multisite phosphorylation can lead to Hill-like response curve.
Note that other response curves, with more/less sharp thresholds
can be obtained with other sets of parameter values (see for
example the case of ultrasensitivity discussed here below), but they
can not always be accurately approximated by Hill functions. We
thus have at hand a realistic molecular mechanism producing Hill-
like kinetics, which can now be integrated in the Goodwin model.

Combining the Multisite Phosphorylation and the
Goodwin Model

We now propose a mechanistic description of the Goodwin
model in which the Hill function is replaced by the multisite
phosphorylation module described in the previous section.

We will assume that (1) the Goodwin variable Z is the total
concentration Etot of a kinase E that catalyzes the sequential

Figure 4. Scheme of the Goodwin model combined with the multisite phosphorylation module. In this model, variable Z is the kinase E
which can be found in its free form or in a complex with any phosphoform of S. We also assume that all forms of free S, except Sn , can induce the
synthesis of X.
doi:10.1371/journal.pone.0069573.g004
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phosphorylation of a transcription factor S on n sites, (2) all free
forms of S except the fully phosphorylated form (Sn) are equally
active to induce the transcription, i.e. the synthesis of X, and (3) Sn

does not induce the transcription of X (Fig. 4).
The complete model is described by the following 3nz4

equations:

dX

dt
~k1Sact{k2X

dY

dt
~k3X{k4Y

dE

dt
~k5Yz

Pn{1

i~0

(kd,i
:ESi{ka,i

:E:Sizkc,i
:ESi){k6E

dS0

dt
~kd,0

:ES0{ka,0
:E:S0zk0c,0

:PS1zk6ES0

dSi

dt
~kc,i{1

:ESi{1zkd,i
:ESi{ka,i

:E:Sizk0c,i
:PSiz1

zk0d,i{1
:PSi{k0a,i{1

:P:Sizk6ESi

for i[ 1,2, . . . ,n{1f g
dSn

dt
~k0d,n{1

:PSn{k0a,n{1
:P:Snzkc,n{1

:ESn{1

dESi

dt

~ka,i
:E:Si{(kd,izkc,i):ESi{k6ESi

for i[ 0,1, . . . ,n{1f g
dPSi

dt

~k0a,i{1
:P:Si{(k0d,i{1zk0c,i{1):PSi

for i[ 1,2, . . . ,nf g

ð11Þ

where

Sact~
Xn{1

i~0

Si ð12Þ

In this model, we also assume that the enzyme E, being in its free
form (E) or in a complex with any phosphorylated form of S (ESi,
with i~0,1,:::n{1), is degraded at the same rate k6. To keep the
total concentration of S, Stot, constant, we further assume that
when the complex ESi is ‘‘eliminated’’, E is actually degraded and
the free form of S, Si is released. Given these assumptions and
under the hypothesis that the kinetics of the phosphorylation
module occurs at a much faster time-scale than the rest of the
system (quasi-steady state assumption), the model can actually be
reduced to the 3-variable Goodwin model, with dEtot=dt&dZ=dt
(see Text S1, Section C, for the mathematical derivation).

To assess the validity of the quasi-steady state assumption, we
performed numerical simulation of the complete model (Eqs. (11)),
for n~10. Figure 5 shows the dynamics of the model when the
kinetics of the phosphorylation/dephosphorylation reactions are
fast compared to the dynamics of the Goodwin variables. The
oscillations obtained are in very good quantitative agreement with
the prediction of the three variable model. When the phosphor-
ylation/dephosphorylation reaction rates are reduced by a factor
100, limit-cycle oscillations still occur (Fig. 6) but their amplitude
and period slightly depart from the limit-cycle generated by the 3-
variable model (Fig. 7, red and black curves). If the reaction rates
are decreased by a factor 1000, the oscillations are even more
altered and their amplitude is significantly reduced (Fig. 7, green
curve). Finally, if the reaction rates are further decreased, by a
factor 10000, oscillations are lost and the system converges to a
stable steady state (Fig. 7, violet dot). Using Michaelis-Menten

kinetics instead of mass action laws for each phosphorylation/
dephosphorylation step leads to a very good agreement with the
above detailed model (See Text S1, Section D and Fig. S2).

In summary, the Hill function in the Goodwin model can be
justified by the quasi-steady state limit of a multisite phosphory-
lation mechanism of a transcription factor. Constraints on the
speed of the phosphorylation module have however to be fulfilled
to make the quasi-steady state assumption valid. In particular the
speed of these post-translational modification must be fast
compared to the other processes of the oscillatory mechanism,
such as the synthesis and degradation rates. These constraints add
to those on the kinetic parameters which allow a Hill-like response
of the phosphorylation module (see previous section and Table
S1).

Zero-order Ultrasensitivity
Multisite phosphorylation is not the only way to generate sharp

thresholds. In fact, a single, reversible, phosphorylation mecha-
nism can, under some conditions, produce very abrupt thresholds
[5]. This so-called zero-order ultrasensitivity effect was used in a
number of computational models in biology, namely in models for
the cell cycle [39,40]. The derivation of the kinetics equations for
zero-order ultrasensitivity is provided in Text S1 (Section E), Fig.
S3, and Table S1.

We could not find parameter values for which the response
curve of the ‘‘zero-order ultrasensitivity’’ function tightly fits the
Hill function. There is actually a trade-off to set between the fitting
of the middle part and the fitting of the upper and lower part of the
response curve (Fig 8). We therefore manually tuned the kinetic
parameters of the zero-order ultrasensitivity module such that its
response curve approximates Hill function (with given Hill
coefficient), using conditions derived in Text S1 (Section E) as
an initial guess for this parameter setting (Fig. 8).

The Hill function of the Goodwin model was then replaced by
this mechanism (Fig. 9). As before, we will assume that Z is the
kinase E and that only the dephosphorylated form of S, S0

(equivalent to Sact in the previous model), activates the synthesis of
X. The model is thus the same as the previous one, for the
particular case where n~1.

The time evolution of the model is governed by the following 7
equations:

dX

dt
~ k1S0{k2X

dY

dt
~ k3X{k4Y

dE

dt
~ k5Y{k6E{ka

:S0
:Ezkd

:ES0zkc
:ES0

dS0

dt
~ {ka

:S0
:Ezkd

:ES0zk’c:PS1zk6
:ES0

dS1

dt
~ {k’a:S1

:Pzk’d :PS1zkc
:ES0

dES0

dt
~ ka

:S0
:E{kd

:ES0{kc
:ES0{k6

:ES0

dPS1

dt
~ k’a:S1

:P{k’d :PS1{k’c:PS1

ð13Þ

The system defined by Eqs. (13) can generate limit-cycle
oscillations, which are in reasonable agreement with the prediction
of the original 3-variable model (Fig. 10). To obtain such
quantitative agreement, we had (1) to set the system in zero-order
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ultrasensitivity conditions, (2) to assume that the kinetics of the
phosphorylation module is much faster than the kinetics of the rest
of the system, and (3) to (manually) adjust some kinetic parameters.

A few other differences with the previous model are worth
mentionning. First, contrary to the case of multisite phosphory-
lation, one condition to obtain zero-order ultrasensitivity in a
single phosphorylation cycle is that the substrate S is in high
quantity with respect to the enzymes (Stot & Etot, Ptot) (see Table
S1). We therefore had to decrease the scale of the variable Etot~Z
(by a factor 100 in our simulation) compared to the 3-variable
model. Second, as shown in Fig. 10C, the fraction of active S (S0)
reaches much higher amplitude than in the multisite phosphor-
ylation model because the threshold effect is here more
pronounced (Fig. 10D).

As observed in the multisite phosphorylation model, limit cycle
oscillations are lost when the phosphorylation/dephosphorylation
reactions are too slow. On the contrary when the kinetics of the
phosphorylation/dephosphorylation reactions is very fast, limit
cycle oscillations are preserved and match their quasi-steady state
approximation (Eqs. S58-S60) (not shown). We also checked that

using Michaelis-Menten kinetics instead of mass action laws leads
to consistent results (not shown).

In summary, zero-order ultrasensitivity arising in single
reversible phosphorylation mechanism provides an efficient way
to generate sharp thresholds. Although it does not lead to a perfect
quantitative fit with the 3-variable Goodwin model, it constitutes a
very simple mechanism which can be used to substitute for the Hill
function in the Goodwin model to generate limit-cycle oscillations.

Phase-resetting Goodwin Model
Ruoff et al [20,21] introduced a variant of the Goodwin model

in which the Hill function is replaced by an arbitrary 2-threshold
‘‘reset function’’, finhib, which is set to 0 when Z crosses upwards
the value of Zmax and to 1 when Z crosses downwards the value of
Zmin.

The equations for this system write:

dX

dt
~k1finhib{k2X ð14Þ

Figure 5. Dynamics of the Goodwin model combined with the multisite phosphorylation module. These results have been obtained by
numerical integration of Eqs. (11). Parameter values for the Goodwin model are as in Fig. 2. Kinetic parameter values for the phosphorylation module
are as in Fig. 3 for n~10 but multiplied by a factor 100. Conservation parameter values, Stot and Ptot, are the same as in Fig. 3. In panel A, the thin
blue curve corresponds to Sact at steady state, as obtained in Fig. 3, while the thick line denotes the trajectory of the present system. The inset is a
zoom on the lower part of that curve. The oscillations are in very good agreement with the oscillations generated by the 3-variable model (Fig. 2, see
also Fig. 7 for a comparison of the limit cycles). The period of the oscillations, about 40 a.u., is also consistent with the 3-variable model.
doi:10.1371/journal.pone.0069573.g005
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dY

dt
~k3X{k4Y ð15Þ

dZ

dt
~k5Y{k6Z ð16Þ

This phase-resetting model produces relaxation oscillations
(Fig. 11) and was used to reproduce phase response curves [20]
and to study temperature compensation [21] in circadian systems.

We seek here to find a realistic molecular mechanism that can
account for these abrupt phase resettings. Intuitively, a mechanism
based on bistability should explain such double threshold effect
and the rapid switch between the two states of the reset function.

Bistability Arising from a Double Phosphorylation Cycle
Bistability, defined as the coexistence of two stable steady states,

is thought to constitute the central process of cellular differenti-
ation [41], but appears to be also involved in the molecular
mechanism of cellular oscillators, such as the cell cycle [42].
Kholodenko and coauthors [33,43,44] showed that bistability can
occur in a system involving two reversible phosphorylations,
provided that some conditions on kinetic parameters are fulfilled.

We consider here the double phosphorylation model described
in Ortega et al [43], whose detailed version is equivalent to the
model defined by Eqs. (7) for the case n~2. The variables S0, S1,
and S2 represent the different forms of a protein, namely the non-
phosphorylated form S0, the mono-phosphorylated form S1, and
the bi-phosphorylated form S2. The total level of the protein is
constant: Stot~S0zS1zS2. The phosphorylations are supposed
to take place in a processive way.

The kinetic equations for this double phosphorylation model
are:

Figure 6. Effect of the speed of the phosphorylation module. The results have been obtained for the same equations as in Fig. 5. The kinetic
parameter values of the phosphorylation module have been decreased by a factor 100 compared to Fig. 5. The other parameter values are the same
as in Fig. 5. The trajectory of the complete system does not match the steady state curve because the dynamics of Sact is not sufficiently fast (Panel A).
Nevertheless the oscillations are not significantly affected compared to the 3-variable model (see Fig. 7 for a comparison of the limit cycles). Due to a
slowing down of the dynamics, the period (54 a.u.) is longer than the oscillation period in the 3-variable model.
doi:10.1371/journal.pone.0069573.g006
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Figure 7. Comparison of the 3-variable Goodwin model with its variant based on multisite phosphorylation. Shown are the limit cycles
obtained for the 3-variable model (black curve) and for its variant based on multisite phosphorylation, for various speeds of the phosphorylation
module. The blue and red curves correspond to the cases illustrated in Figs. 5 and 6, respectively. The green curve is the limit cycle obtained when
the kinetics rates of the multisite phosphorylation module are decreased by a factor 10 compared to the values given in Fig. 3. The violet dot is the
stable steady state of the system when the kinetics rates of the multisite phosphorylation module are reduced by a factor 100.
doi:10.1371/journal.pone.0069573.g007

Figure 8. Zero-order ultrasensitivity. Comparison of the response curve of the phosphorylation/dephosphorylation module (Eqs. (S44),
equivalent to Eqs. (7) with n~1) and the Hill function. The parameter values are: ka~1000, kd~10, k’a~1000, k’d~10, k’c~10, Stot~1 and
Ptot~0:01. The blue curve corresponds to the steady state value of S0 as a function of the total concentration of the kinase, Etot (cf Text S1, Section
D). The red curve is the Hill function plotted for n~10 and Ki~0:01. Note that a Hill curve with n~20 better fits the middle part but not the upper
and lower parts of the response curve of the phosphorylation/dephosphorylation module (not shown).
doi:10.1371/journal.pone.0069573.g008
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where the total concentration of kinase (Etot~EzES0zES1) and
phosphatase (Ptot~PzPS1zPS2) are constant.

Ortega et al. [43] derived conditions on the parameter values to
set the system in a bistable domain (see Text S1, Section F, and
Table S1). The parameter values of our model were thus adjusted
according to these constraints and numerical simulations of the
system were performed. The result of the simulation shows a

Figure 9. Scheme of the Goodwin model combined with a
single phosphorylation/dephosphorylation module. The phos-
phorylation/dephosphorylation module can generate sharp thresholds
through ‘‘zero-order ultrasensitivity’’.
doi:10.1371/journal.pone.0069573.g009

Figure 10. Dynamics of the Goodwin model combined with a ‘‘zero-order ultrasensitivity’’ phosphorylation module. The time series
have been obtained by numerical integration of Eqs. (13), with the following parameter values: Stot~1, Etot~Ptot~0:01, k1~0:01, k3~1, k5~0:0005,
k2~k4~k6~0:1. The kinetics rates of the phosphorylation/dephosphorylation reactions are as in Fig. 8 but multiplied by a factor 100. For clarity and
to facilitate the comparison with the 3-variable model, variable Z~Etot~EzES0 has been multiplied by a factor 100. In panel B, a comparison of the
limit cycle obtained for the present model (blue curve) and for the original 3-variable Goodwin model (black curve) shows a reasonable agreement
between the two models. The period, about 40.7 a.u., is very close the period of the original Goodwin model. In panel D, the thin curve corresponds
to the steady state of the phosphorylation module (cf. Fig. 8) and the thick curve is the trajectory of the present system.
doi:10.1371/journal.pone.0069573.g010
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bistable domain, in a bounded window of values of Etot, delimited
by two saddle node bifurcation points (Fig. 12). Note that, outside
the bistable regime, S is either mainly in the free form (S0&Stot)
or mainly in the biphosphorylated form (S2&Stot). The interme-
diary form S1 is always present in very low quantity.

We then check that this bistable model can, in response to a
periodic signal, reproduce the abrupt switches reminiscent of the
arbitrary resetting created by the finhib function. To do so, we
examined the effect of a periodic modulation of Etot on the
bistable module (Fig. 13). The results confirm that if the kinetics of
the bistable system is sufficiently fast the bistable module produces

abrupt switches, which occur when Etot reaches the saddle node
bifurcation points.

Combining the Bistable Module and the Resetting
Goodwin Model

In a second step, we plugged the bistable module in the
Goodwin system, thereby replacing the finhib function by the
variable S0 (Fig. 14). As in the previous models, we will also
assume that Z is the kinase E. The complete model has 10
variables, whose evolution is governed by the following equations:

Figure 12. Bistability in the double-phosphorylation system (Eq. (17)). (A) Bifurcation diagram showing the steady state of S0 as a function
of Etot. (B) Bistability domain in the (Etot,kc1~k’c2) parameter space. The other parameter values are: ka1~k’a2~200000, kd1~k’d2~1000,
kc1~k’c2~1000, ka2~k’a1~250000, kd2~k’d1~1250, kc2~k’c1~1250, Stot~100 and Ptot~1. The bistable domain in panel A is delimited by two
saddle-node bifurcation points at Etot~0:81 and Etot~1:23 (red points). The simulations have been carried out using XPP-AUTO software [49].
doi:10.1371/journal.pone.0069573.g012

Figure 11. Dynamics of the ‘‘reset’’ Goodwin model. The time series have been obtained by numerical integration of Eqs. (14)-(16) for the
following parameter values: k1~0:3, k2~0:27, k3~0:3, k4~0:5, k5~0:3, k6~0:2, Zmin~0:05 and Zmax~0:1 (values taken from [21]). Oscillations
have a period of about 24 a.u.
doi:10.1371/journal.pone.0069573.g011
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with Ptot~PzPS1zPS2 is constant and Z~Etot~Ez
ES0zES1 evolves with time.

To obtain a good agreement between the present model and the
3-variable model, we (manually) adjusted the parameters values in
order to roughly set the bifurcation points (delimiting the bistable
domain) to Zmin and Zmax. This was achieved by rescaling Etot by
a factor 10 (through the constant k5) and Stot by a factor 100
(through k1).

For this parameter setting, numerical simulation of this system
generates relaxation oscillations similar to the ones obtained with
the ‘‘2-threshold’’ Goodwin model (Fig. 15). We can also observe
that S0 undergoes very abrupt switches between 0 and 100,
mimicking the effect of finhib.

Thus, these results provide a rational molecular mechanism for
the arbitrary resetting function proposed by Ruoff (2001, 2005).
We can also anticipate that any system displaying bistability could,
upon appropriate calibration, generate similar switch-like effects.

Discussion

The phenomenological Goodwin model constitutes a generic
oscillator model in biology. It was originally developed to
demonstrate the occurrence of oscillations in a delayed negative
feedback loop system [8]. It contains only 3 variables and involves
a single non-linear term, which takes the form of a Hill function.
Analytical studies of this system demonstrate that limit-cycle
oscillations can be produced by this model if the Hill coefficient n
is greater than 8 [9]. Such high non-linearity is hard to justify
mechanistically through realistic cooperative processes which arise

Figure 13. Effect of a periodic modulation of Etot on the bistable system of the double-phosphorylation module. In panel A, the grey
curve represents the steady state of S0 as a function of Etot and the blue curve the trajectory of the system. In panel B, the blue curve is S0 . The
parameter values are the same as in Fig. 12. Etot follows a sine wave with period of 24 a.u. and amplitude of 2 a.u. (red curve).
doi:10.1371/journal.pone.0069573.g013

Figure 14. Scheme of the Goodwin model combined with the
double-phosphorylation module producing bistability.
doi:10.1371/journal.pone.0069573.g014
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in enzymatic kinetics or at a transcriptional level. More recently, a
variant of the Goodwin model, in which the Hill function has been
replaced by an arbitrary 2-threshold ‘‘reset’’ function [20,21], has
been proposed to model circadian systems. The goal of the present
paper was to examine alternative molecular mechanisms that may
explain this sharp threshold kinetics and thereby validate the use of
the standard and the phase-resetting Goodwin models for
biochemical systems. We focused on phosphorylation/dephos-
phorylation of a single transcription factor and studied three
molecular mechanisms which have been shown to produce step-
like responses: a multisite phosphorylation/dephosphorylation, a
double phosphorylation/dephosphorylation (giving rise to bist-
ability) and a single phosphorylation/dephosphorylation mecha-
nism (producing zero-order ultrasensitivity).

A genome-scale screening of enrichment of phosphorylated
proteins revealed that about one third of the proteins undergo
phosphorylation, most often on multiple sites [32]. Several
theoretical studies have shown that sharp thresholds can easily
be generated from such post-translational modifications [2,3,26–
29]. Multisite phosphorylation has been shown to play a key role
in the regulation of signalling pathways but also in genetic
networks, including circadian clocks [34,35] and the cell cycle

[36,37]. By inducing conformation changes in proteins, multisite
phosphorylation provides an efficient way to control the catalytic
activity of enzymes or the regulatory activity of transcription
factors [45].

We have shown here that a Hill-type response curve can result
from a multisite phosphorylation of a transcription factor and that
such mechanism can substitute to the arbitray Hill function in the
Goodwin model. The Goodwin model combined to a multisite
phosphorylation process yields limit-cycle oscillations which are in
very good quantitative agreement with the limit-cycle oscillations
generated by the 3-variable model. This matching is obtained
when the speed of the phosphorylation module is fast compared to
the rest of the system and under some additional conditions on the
parameter values. In particular, disparate kinetics rates are
required. In these conditions, the quasi-steady state approximation
can be applied and the Goodwin model can be seen as a limit case
of the full system based on multisite phosphorylation when the
kinetics of the phosphorylation module is fast. Even if the perfect
agreement would only be reached for infinitely fast phosphoryla-
tion/dephosphorylation rates, the Goodwin model remains a good
and convenient approximation of the complete system. This
reduced model contains only 3 variables whereas the full system

Figure 15. Dynamics of the Goodwin model coupled to the bistable module (Eqs (18)). The parameter values for the Goodwin module are
as in Fig. 11 except k1~0:003 and k5~3. The parameter values for the bistable module are as in Fig. 13. In panel B, the black curve represents the
limit cycle for the 3-variable model while the blue curve is the limit cycle for the present model. In panel D, the grey curve represents the steady state
of the bistable module (as in Fig. 13) and the red curve is the trajectory of the present system.
doi:10.1371/journal.pone.0069573.g015
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(for n~10) counts 34 variables. More importantly, the CPU time
to simulate the 3-variable system is significantly smaller than for
the full system because the latter involves a mixture of slow and
fast reactions, requiring stiff integration methods.

To generate sharp threshold, it is not necessary to resort to
multisite phosphorylation processes. Actually, a single, reversible
phosphorylation/dephosphorylation mechanism can already pro-
duce ultrasensitivity, provided that the Michaelian constants are
very low [5]. The response curve obtained in that case, however,
can not be accurately approximated by a Hill kinetics. We showed
that such process can nevertheless be integrated in the Goodwin
model and, after adjusting some kinetic parameter values,
generates limit-cycle oscillations which match reasonably well
the ones obtained in the original 3-variable model.

Bistable switches provide another means to produce abrupt
transition. Bistability behaviour can be induced by a double
phosphorylation/dephosphorylation mechanism [33,43,44]. We
have shown here that such molecular description provides a
realistic mechanism consistent with the arbitrary reset function
used by Ruoff et al [20,21]. In this way, relaxation oscillations can
be generated easily, without requiring an additional, positive,
transcriptional feedback loop, or a Hill process with very high Hill
coefficient [13].

The Goodwin model can thus be seen as a transcription-
translation feedback loop, coupled to a post-translational mech-
anism. We should stress that, beyond the particular case of the
Goodwin model, the proposed mechanism supports the use of Hill
functions with moderate Hill coefficient (n~4 or 5) as postulated
in many genetic models [17–19]. It is also worth mentionning that
the response curve of the phosphorylation modules does not
necessarily need to closely fit the Hill function to obtain limit-cycle
oscillations. We focus here on Hill function because it is commonly
used in biological systems. Of course, we do not exclude that other
post-translational processes could lead to similar kinetics and could
provide alternative, suitable support for the Goodwin (and related)
model.

The dynamics of post-translational processes is often studied at
the steady state level. Properties like response curves or bistability
reflect static features of these systems. However signalling
pathways and genetic network rarely operate at steady state. It is
therefore important to assess the behaviour of these post-
translational regulations when they are embedded in a dynamical
system, such as a genetic oscillator. Our results highlight the
impact of the speed of phosphorylation/dephosphorylation as slow
phosphorylation process can significantly alter the oscillatory
behavior of the detailed Goodwin model. The assumption that the
binding/unbinding of the kinase (or phosphatase) to the regulatory
protein is much faster than transcription and translation processes
is in principle reasonable. Changing gene expression can take
hours and even days while posttranslational protein modifications
usually take minutes to occur. However, this assumption on time
scale separation should be discussed in specific contexts.

Ultrasensitivity and multisite phosphorylation have already
been exploited to construct minimal and detailed models for the
cell cycle [37,39,46,47] and for circadian clocks [18,48]. Here, we
have shown that the Goodwin model may be used as a building
block to model a large class of biological oscillators based on the
negative transcription feedback loop coupled to post-translational
modifications.

Materials and Methods

Temporal simulations and responses curves have been per-
formed with Matlab (using the ode23tb integrator for the detailed
models). Response curves (Figs. 3 and 8) have been obtained by
running numerical simulations until the system converged to its
steady state, which is then recorded for various values of the
control parameter (usually Etot). Bifurcation diagrams shown in
Figs. 12 and 13 have been generated with XPP-AUTO [49].

Supporting Information

Figure S1 Multisite phosphorylation vs Hill approxima-
tion. Response curves obtained by the multisite phosphorylation
mechanism (blue dashed curves) are compared to Hill functions
(blue curve), for n~2, n~4, and n~10 (see also Text S1, Section
A).
(EPS)

Figure S2 Michaelis-Menten approximation. Comparison
of the limit cycle obtained by the fully detailed Goodwin model
combined to the multisite phosphorylation module (blue curve)
and the limit cycle obtained using the Michaelis-Menten equations
(red curve) (see also Text S1, Section D).
(EPS)

Figure S3 Zero-order ultrasensitivity. Response curve of
S1 as a function of the ratio v=v’ (as defined by Eq. (S59)), plotted
for various values of KM~K ’M and v2~1 (see Text S1, Section
E).
(EPS)

Table S1 Parameter conditions required for the deri-
vation of the response curves for the mechanistic
modules studied in this work. The definition of the
parameters and the derivation of the conditions established by
Gunawardena, Goldbeter and Koshland, and Ortega et al. can be
found in supplementary material section A, E and F respectively.
For more details about the derivation, see the original papers. The
equations are taken at steady state for the derivation of all the
conditions. Note that, as mentionned in the text, approximating
the Goodwin model combined with each mechanistic module with
the Goodwin model requires additional conditions on the time
scales of the kinetic parameters, i.e. the kinetics of the mechanistic
phosphorylation module has to be much faster than the kinetics of
the rest of the model (Quasi-steady state approximation condi-
tions).
(PDF)

Text S1 Supporting Material.
(PDF)
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