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INTRODUCTION 

THE demonstration of negative feedback control processes operating at the 
molecular level in cells is one of the most significant developments in modem 
biology. The phenomena of feedback inhibition( z, 2) and feedback repression(a> 
whereby enzymatic activities are controlled at the level of the enzyme and 
the gone, respectively, provide a firm experimental basis for the construction 
of dynamic models which represent the fundamental regulatory activity of 
cells. The behavior of these and other molecular control circuits thus con- 
stitutes the basis of cell physiology, and in effect provides the physiologist 
with his elementary units of function. 

It is of fundamental importance to an understanding of cellular organization 
whether or not the dynamic activity of molecular control processes involves 
oscillatory behavior. The traditional view of the cell as a biochemical system 
is that molecular populations move towards steady-state levels determined by 
the environment, and that when a steady state is reached the system maintains 
itself by a constant flow of intermediates. This view regards the cell as a 
passive system which changes state only in response to environmental stimuli. 

However, there is considerable experimental evidence which suggests that 
cellular processes are intrinsically rhythmic or periodic, evidence which 
comes largely from studies showing the widespread occurrence and funda- 
mental significance of biological "clocks" and timing devices.( 4, 5) More direct 
observations of periodicities in the dynamics of metabolic processes in cells 
have been reported by Duysens and Amesz(6) and by Chance, Estabrook and 
Ghosh.¢7~ On the theoretical side, the occurrence of negative feedback and 
time-lags in the operation of molecular control circuits makes it highly 
probable that many molecular species in cells will undergo continuing 
undamped oscillations. The purpose of this paper is to illustrate the type of 
periodic behavior which can arise in model systems incorporating the 
essential control features of enzymatic regulatory processes, and to discuss 
the significance of oscillatory motion in relation to the organization of 
cellular processes in time. In order to handle these ideas mathematically, 
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certain concepts and quantities of an essentially thermodynamic nature will 
be introduced, so that it will be possible to pursue an analysis of temporal 
organization in cells which links the microscopic or molecular features of 
cellular control processes with the macroscopic or physiological properties 
of cells. In this I will follow the procedure given in my book dealing with 
this question.tS~ 

N O N - I N T E R A C T I N G  O S C I L L A T I O N S  

The first control system which will be studied is that illustrated schematically 
in Fig. 1. Here/~ is a genetic locus which produces messenger dbonudeic acid 
(mRNA) in quantities denoted by X~. This mRNA then combines with ribo- 
somes to form active protein-synthesizing aggregates (polysomes) designated 

Xi 

Mi 

FIG. 1. 

by R, producing protein in quantity Y,. This protein assumed to be an enzyme 
then directs a metabolic transformation giving rise to a metabolic species 
M, which passes through a cellular pool, Pf. A fraction of the metabolite in 
the pool feeds back to the genetic locus where it serves to repress the activity 
of the gene, presumably in association with a macromolecule, the apore- 
presser.t9) 

This cycle constitutes a closed-loop negative feedback control circuit whose 
operation has been called feedback repression.(a) A set of equations des- 
cribing the dynamics of this system under certain assumptions regarding the 
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essential control variables involved has been derived by Goodwin.~S) They are: 

dX~ _ a~ b~ 1 
dt A~ + ki Y~ I (1) 

dY~ _ O4X~ --/3t 
dt 

where X~ ----- concentration of mRNA of the ith species, 

Y~ = concentration of protein of the ith species, 

this protein assumed to be an enzyme. The other quantifies are parameters 
whose significance is discussed in my book. These equations describe what is 
probably the simplest conceivable control process consistent with certain 
essential features of genetic control of enzyme synthesis. 

The major feature of these equations is the occurrence of Y~ in the denomina- 
tor of the expression for the rate of mRNA synthesis. This is a consequence 
of the assumption that the repressor complex acts on the DNA template by a 
surface adsorption process similar to the action of inhibitors on enzymatic 
activity. The parameter k~ therefore involves an equilibrium constant for 
the non-covalent reaction between deoxyribonucleic acid (DNA) and the 
repressor. 

Equations (1) ~vere studied dynamically on a Philbrick Analogue Computer 
at the Massachusetts Institute of Technology, and the behavior of the variables 
X~ and Y~ is shown in Fig. 2, for parameter values: 

m ---- 72, A~ = 36, kt ---- 1, bt = 2, o4 = 1, ~ ---- 0 
(X0o ---- 7, (Y~)0 ---- --10 (initial values of the variables). 

The variable with the larger amplitude is Y~. The scale is in 10 V increments 
between each heavy horizontal line, zero being given by the line passing 
through the centre of the oscillation in X~. Thus X~ varies between + 10 and 
--10 V, for example. 

The parameter values are scaled to keep the variables within the limits of 
machine operation. For actual molecular populations in cells, the amplitude 
of the oscillation in Y~ (enzyme) would be many times larger than that in Xi 
(mRNA). In real time, a single complete oscillation would take about 4-8 hr, 
whereas on the computer it takes about 0.28 sec (the computing interval 
shown is 1 sec). X~ and Y~ are allowed to take negative values in this model for 
scaling purposes, although biologically these quantities are always positive 
or zero, being concentrations. The units of the variables are chosen for 
convenience to be molecules per cell. 

The equations clearly define a non-linear biochemical oscillator. It has 
been shownCs) that the equations (1) have a first integral of the motion (an 
invariant integral), so that the dynamic system is conservative in some sense. 



428 BRIAN C. GOODWIN 

A temperature function, O can thus be defined for the oscillator in the same 
way that thermodynamic temperature is defined for a molecule in an ideal 
gas in terms of its Hamiltonian. Thus one can write: 

p = e-(a-~,)/o 

as the probability distribution which defines the statistical properties of the 
oscillator whose invariant integral is G. ~b is in this expression the analogue 
of the free energy of the oscillator. 

The quantity, 0, has been called the talandic temperature of the control 
circuit (Gk raAav'rcoa~ = oscillation), and it is a measure of the amplitude 
of the oscillation. On the computer this amplitude is determined by the initial 
values of X~ and Yr. The steady state of equations (1) is given by the quantities 
. ~  = p~ = fl~/a~, ~'~ --- q~ ---- 1/ki(ai/bi - -  At) .  For the parameter values chosen, 
these are p~ = qt = 0. Starting the system with Xi and Yi at these steady-state 
values, it is observed that there is initially no oscillation at all in the variables. 
However, when the computer is allowed to "run", noise in the circuitry 
introduces perturbations and the oscillations build up in amplitude, increasing 
until the machine reaches its limiting voltages. This behavior reflects the 
conservative property of this dynamic system, which is only weakly stable: 
small disturbances produce changes in the trajectories which build up and 
lead ultimately to instability, the oscillations increasing in amplitude and 
being bounded only by the limits of machine operation. Strong stability, 
characteristic of oscillators with limit cycles, will be illustrated below in a 
slightly modified set of equations. 

It is observed in Fig. 2 that the amplitude of oscillation in Y~ is considerably 
larger than that in X~. This is consistent with the theoretical calculation of 
relative amplitudes. Using the procedures of statistical mechanics, approxi- 
mate expressions for the mean positive amplitudes of the variables X~ and Y~ 
can be obtained,iS) with the results: 

J 2 0  OQ~ 
(x,+) -ffc, (Y'+) b,k---, 

where c~ : (a~kO/Q~, Q~ = A~ + k~q~. For the parameter values used, these 
quantities are: 

2×3 6×0  ~ % /  360 
(X~+) ~ - - ~ r  ~ O, (Y~+) ~ ~ ----- 180 

The talandic temperature, 0, is defined in this system by the relations: 

cfX~( X~ - -  p~) ~- 0 = b~k~ Y~( Y~ - -  qO 
Q((A~ "q- k ( Y i )  

where the bars signify mean values. A calculation from Fig. 2 gives 0 ~ 1.33. 



FIG. 2. 

FIG. 3. 

[.facing p. 42~ 
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Thus we get: 
(X, +) ~ 5.53, (Y,+) ~ 24, 

which values correspond reasonably well with the observed amplitudes. 
Another interesting feature of the oscillations is that there is an asymmetry 

in the variable Y, about its steady state, excursions above q, ---- 0 being ap- 
preciably greater than those below. This is a consequence of the non-linearity 
of the oscillation, the non-linearity increasing with 0. 

In Fig. 3 is shown the same oscillator as that of  Fig. 2, but now the initial 
conditions are X0 = 0.9, Y0 = 0, values very close to the steady state where, 
theoretically, there should be no oscillation at all. Clearly the amplitude is 
greatly decreased, so that 0 is much reduced over its value in Fig. 2. Further- 
more, the observed oscillation, which is in the variable Y,, is very nearly 
sinusoidal (linear). 

The reason for using these thermodynamic-like notions of talandie energy, 
talandic temperature, etc., in the context of an analysis of  the dynamic behavior 
of  cellular control processes is the following. Within  a single cell hundreds 
of  different proteins, the majority of them enzymes, are being synthesized 
at any one time. Their synthesis and activity are regulated by negative feed- 
back control processes which interact with one another either directly or 
via common metabolic pools in such a manner as to achieve coherence and 
order in the biosynthetic and physiological activities of the cell. In 
order to study the general dynamic behavior of these hundreds of control 
circuits operating in a common metabolic space, it is necessary to use some 
generalized dynamic analysis such as statistical mechanics. From such an 
analysis there emerge naturally thermodynamic-like quantities, such as the 
talandic energy of a cell. This quantity is then directly related to the amount 
of oscillatory activity within a cell, oscillatory activity which I believe to  
arise from the intrinsic dynamic properties of  dosed feedback control loops. 
The fundamental importance of this type of  energy in the organization of  
of  cell behavior will be discussed later. 

INTERACTION BETWEEN NON-LINEAR OSCILLATORS 

It is to be expected from the complexity of intraceUular processes that con- 
trol circuits will interact in some manner. One type of  interaction which 
seems very probable is for the repressor of one genetic locus to have a repres- 
sive effect on another locus. This situation can be represented schematically 
as in Fig. 4, and mathematically by the equations: 

dXi __ al -- bi, d Y1 aiXi -- fli 
dt Ai + kii Y1 + ki2 Ya ~ -  = 

(2) 
dXs _ as - -  b~, d Ys 
dt As + k21 Y1 + ks2 Y2 - ~ -  = a~Xg. - -  fls 
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Mt 

XI 

I 
Yt 
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×z M2 

Yz 

Fro. 4. 

where mutual interactions between the oscillators are allowed if both kle and 
k~  have non-zero values. Figure 5 shows the Y-variables of a pair of non- 
interacting control circuits when the parameters are: 

al = 360; +/11 = 36; bl = I0; kn  = I; kle = 0; ai = 0.5; 

81 = 0; as = 360; As --- 43; be ---- 10; km = 0; kee = 1; 

os = 0 . 6 ;  ~Se = 0 .  

A theoretical calculation of the relative frequencies of  these oscillators gives: 

we b2~"c~= / 0 . 6  11 

Thus the free-running or non-interacting oscillators have different frequencies, 
O1 (oscillator I, variables XI and YI) completing 10 cycles in about the same 
time as it takes 02 to complete 1 I. Setting now kle = 0.3 and keeping k~t ---- 0, 
so that the faster oscillator drives the slower one, the result is as shown in 
Fig. 6. The slower oscillator is entrained to we, the frequency of  Os, and now 
the behavior of the oscillators is completely coherent. The emergence of  an 
ordered relationship between the oscillators from the disorganized behavior 
shown in Fig. 5 shows how interactions between control circuits in cells can 
lead to organization of biochemical processes in the time domain, thus 
producing coherent behavior. For example, the levels of the enzymes involved 
in the synthesis of  adenine and guanine could be controlled by circuits which 
interact in this manner, so that there is always a close correlation between the 



FIG. 5. 

FIG. 6. 
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rates of production of these two metabolites. It is clear that in the economy of 
a cell there is a distinct advantage in having coherent synthetic rates in related 
metabolic processes. The suggestion presented here is that the cell employs 
non-linear interaction to achieve this organization in time of its intrinsically 
rhythmic biochemical activities. 

If the interaction is reversed so that O1 interacts with Oz, but not vice-versa 
(klz ---- 0; k21 ---- 0.3), one observes a different phenomenon, as shown in 
Fig. 7 (where the computing time is 2 sec, as compared with 1 sec in Fig. 6). 
In this case there is no entrainment of frequencies, but a beat occurs in O3 
with a beat frequency equal to about w~/11 ---- wx/10, where wx and wz are 
the original free-running frequencies. The beat frequency is clearly determined 
by the ratio w~/wl ---- I 1/10. 

Figure 8 shows the Y-variables for the pair of oscillators defined by 
equations (2) when there is no interaction (kl~ = kgl = 0) and al = 0.6, 
as = 2.0 (other parameters unchanged from above values). The ratio of 
the frequencies is now, theoretically, 

This corresponds roughly to the observed ratio. Introducing mutual coupling 
between the oscillators, with klz = 1.2, km = 0.4, a phenomenon known as 
subharmonic resonance is observed as shown in Fig. 9. Both variables now 
have the same frequency, which is considerably smaller than either of the 
free-running frequencies. The lower curve is Y~, and in it one can still see the 
original frequency on which has been superimposed the slower frequency of 
the subharmonic, of order about 1/3. In YI the order of the subharmonic 
is about 2/3, the original frequency of Y1, not being visible. 

Two features of this subharmonic resonance are of interest. The first is the 
increase in amplitude which occurs in both variables I"1 and Yz, Y1 more than 
doubling over the free-running amplitude while Y~ is nearly doubled. 
Secondly, in the subharmonic relation the variables are 180 ° out of phase. 
In general it has been found that subharmonics of order smaller than 1/2 in a 
mutually coupled pair of oscillators of the type described by equations (2) 
always involve an antiphase relationship in the Y-variables (i.e. the protein 
populations). Figure I0 shows the behavior of the X-variables (messenger 
RNA population) in the subharmonic relation. The larger oscillation is X1, 
while X~ shows practically no subharmonic at all, in spite of the well-defined 
subharmonic in Y2. This shows that the behavior of mRNA and of protein 
in interacting control circuits may be quite different, variation in one not 
being obviously correlated with variation in the corresponding variable. 

The importance of this type of phenomenon in the organization of bio- 
chemical processes in cells appears to be considerable. We may observe first 
that the range of frequencies available to a cell for ordering its activities 
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relative to environmental periodicities is greatly extended over the frequencies 
of its free-running or primary oscillations. The occurrence of relatively long 
rhythms, such as circadian (,~24 hr) rhythms in unicellular organisms, and 
monthly rhythms in higher organisms, can thus be explained in terms of 
non-linear interaction rather than seeking elementary biochemical processes 
with time constants sufficiently large to generate such long periodicities. In 
the case of circadian rhythms there is good evidence that subharmonic 
resonance (or frequency demultiplication, as it is also called) is indeed 
involved.t1°. 11} 

Another important aspect of a subharmonie relation of the type shown in 
Fig. 9 is the phase relation between the variables Y1 and Y2. In an organism 
with circadian organization such as the unicellular dinoflagellate, Gonyaulax 
polyedra, certain processes such as photosynthesis are at a peak of activity 
during the day, while other processes such as luminescence are maximal at 
night. These activities are controlled by a variety of factors, among them 
enzyme and substrate levels in the cells. It seems reasonable to suggest that 
the timing of maximal photosynthetic and luminescent activity may be 
determined by mutual interactions between the control circuits regulating the 
relevant enzyme and giving rise to a subharmonic resonance such as that 
which has been demonstrated. In this way the organism achieves several 
desired results at once: a variety of frequencies can be generated, from which 
the appropriate one may be selected by proper coupling of control processes; 
an increased amplitude over that of the primary oscillation is obtained; and 
the biochemical activities can be correctly phased with one another. 

For any given pair of coupled circuits, a great variety of subharmonic 
relations may be observed. Increasing the amplitude of O1 and doubling the 
calculation time to 4 sec in the same pair of oscillators, the uncoupled 
behavior of the Y's is as shown in Fig. 11. When mutual interaction is now 
introduced by setting kl~ = 1.2, km -- 0.77, a subharmonic of relatively low 
order is obtained as shown in Fig. 12. For O1 the order of the subharmonic is 
about 2/9, while for O3 it is about 1/9. 

The stability of this subharmonic relation is strongly dependent upon the 
amplitudes of the free oscillators prior to coupling. If the amplitudes are 
small, no subharmonic occurs, and only at larger amplitudes does a stable 
subharmonic relation arise. It is clear from Figs. 2 and 3 that the amplitude of 
the oscillations, hence the talandic temperature of the oscillators, is directly 
related to the "amount" of non-linearity in the dynamics, an oscillator with a 
small amplitude being almost linear and showing quasi-sinusoidal behavior. 
Only as the amplitude increases does the essential non-linearity of the oscillator 
become evident. The non-linear phenomena observed in this study, such as 
entrainment and subharmonic resonance, depend for their stability upon the 
talandic temperature of the oscillators, and this becomes increasingly the 
case as the order of the subharmonic decreases. Thus, the subharmonic of 



OSCILLATORY BEHAVIOR IN ENZYMATIC CONTROL PROCESSES 433 

Fig. 12 requires for stability a significantly larger initial amplitude in one of 
the oscillators than does the subharmonic of Fig. 9. 

As the coupling parameter k21 is increased up to 0.8, lower order subhar- 
monics appear in the coupled system which require progressively larger 
initial amplitudes for stabilization. At k21 = 0.82, the coupled oscillators 
become intrinsically unstable, Y1 increasing to the limit of machine operation 
while Y2 decreases. Theoretical studies of this coupled system(s) have shown 
that there is a critical surface in parameter space which divides a region of 
stable behavior from one of intrinsically unstable behavior, elliptic surfaces 
changing to hyperbolic surfaces. The bifurcation values of the parameters are 
determined by the roots of the equation 

k l l k 2 2  - -  k12k21 • 0.  

For the parameter values used above, kll = 1 ---- k22, kla = 1.2, k~l = 0.82, 
this parametric function has the value (1 --0.984) : 0.016. The instability 
observed on the computer is thus clearly due to the close approach to the 
critical boundary for stable performance. 

It is of interest to observe that the order of the subharmonic observed as 
k21 -~ 0.82 decreases rapidly, so that near the critical value one can get a 

subharmonic of order 1/36 or less, with a very great amplitude of oscillation. 
At the bifurcation value, the order of the subharmonic may be said to become 
zero, while the amplitude becomes infinite. 

More complicated dynamic behavior arises when three control circuits are 
coupled together in various ways. Subharmonic resonances can bc observed 
in such systems wherein all three Y-variables have the same frequency, which 
is smaller than any of the free-running frequencies. Two of the variables are 
then in phase, while the third is in antiphase with them. The interaction 
pattern determines these phase relations, strong mutual coupling between 
two circuits tending to produce an antiphase condition between the oscillators. 
Once again it is the Y-variables which show greatly increased amplitudes over 
the free oscillation under a condition of subharmonic resonance, while the 
X-variables arc only slightly affected. 

Wc may say, then, that third order and higher coupling between control 
circuits allows the cell to organize the periodic synthesis and activity of enzymes 
according to temporal patterns which have maximum adaptive value in the 
prevailing environment. Returning to the case of Gonyaulax, non-linear 
interaction of the type described could provide the cell with the dynamic 
properties necessary for the timing of enzyme syntheses relative to one another 
in a very well-defined and stable manner. The synthesis of enzymes relevant to 
photosynthesis can thus be kept in place with one another, for example, 
while the synthesis of enzymes involved in generating luminescence could occur 
in phase with each other but 180 ° out of phase with the photosynthetic group. 
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Intermediate phase relations can also be achieved by the appropriate coupling 
of control circuits. 

Other non-linear phenomena, such as asynchronous quenching and 
asynchronous excitation(19) have been observed in the coupled system des- 
cribed by equations (2), with appropriate parameter values. It seems reason- 
able to assume that the complete range of non-linear behavior is to be ex- 
pected from these oscillators and their interaction. 

CONTROL CIRCUITS WITH LIMIT CYCLES 

The major mathematical feature of the oscillations which have been 
discussed so far is the existence of a first integral of the motion. Such dynamic 
systems are conservative, and the occurrence of continuing oscillations is 
due primarily to the absence of damping in the. equation of motion defining 
the operation of the circuit. These form a rather special class of negative 
feedback control process, and so it was of interest to investigate the possibility 
of oscillatory behavior in a more general type of system, one in which damping 
occurs. Oscillations in such circuits would be expected to show limit-cycle 
characteristics, or non-conservative behavior. 

The type of equation which was studied was the following: 

dXl al 
-- bi Xi dt A~ -}- klZ1 

dY1 
- ~ x ~  - 3~ Y1 (3 )  

dt 

dZ1 
-- 71 Y1 -- $1Z1 dt 

There are at least three interpretations of these equations, one using the 
concept of diffusion delay, one a precursor concept, and the third the notion 
of a metabolic sequence. In the first case we may consider that there is an 
appreciable delay before mRNA, which is synthesized in the nucleus of 
higher cells, diffuses into the cytoplasm and becomes active in a polyribosome 
complex. Then X1 is nuclear messenger, Y1 is active cytoplasmic messenger, 
and Zx is the active enzyme which controls the level of the metabolite func- 
tioning as repressor at the DNA level. Secondly, we may regard Y1 as an 
enzyme precursor which after primary synthesis on mRNA templates, Xx, 
passes through a pool of inactive molecules before being transformed into 
mature, active enzyme, ZI. Finally, may we take X1 to be an enzyme popula- 
tion whose rate of synthesis is regulated by feedback control at the polysome 
level via a metabolite Z1. Y1 is then an intermediate in the biosynthetic 
sequence leading to Z1. 
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The only dynamic differences in the possible interpretations of the equations 
(3) fie in the values assigned to the parameters. It should be observed that there 
is now self-damping by each of the variables. This means that, for example, 
mRNA and protein are turning over at rates proportional to their concentra- 
tions in the cell, an assumption which is more realistic than the condition of 
constant degradation rates in equations(l). 

When this system is studied with parameter values al = 360, kl = l, 
.41 = 43, bl = l, al = l, 81 = 0.6, 71 = l, ~1 = 0.8, one observes oscillatory 
behavior as shown in Fig. 13. The smaller oscillations are X1 and Y1, X1 
leading Y1 in phase. Regarding X1 as nuclear messenger, Y1 is then activeL 
cytoplasmic messenger which reaches its peak slightly after )/1, there being a 
diffusion delay in the passage of the macromolecule from nucleus to cyto- 
plasm. The large oscillation is then the enzyme population, Z1, which follows 
Y1 with a further delay. The system has been scaled so that the amount of 
cytoplasmic messenger, the area under the Yl-curve, is just about equal to the 
amount of nuclear messenger, the area under XI. The amount of enzyme is 
appreciably larger, of course. 

Oscillatory behavior is by no means a necessary dynamic characteristic of 
equations (3). There is a relatively restricted range of parameter values over 
which periodicities are observed, the system being damped elsewhere. How- 
ever, whenever oscillations do occur in such a system, they have the charac- 
teristics of limited surfaces. In Fig. 14 is shown the phase portrait of the vari- 
able Z1 against Y1 (enzyme as a function of cytoplasmic messenger). ZI is on the 
abscissa, Y1 is the ordinate, and the positive direction of Zl-axis is from right 
to left. In this case the system started at a point inside the limiting trajectory, 
and one can see the widening spirals as the system approaches the limit cycle. 
Exposure problems prevented a photographic recording of the complete 
approach to the final limit cycle. 

If  the same system was started at a point outside the limit cycle, the spirals 
fell inwards towards it, converging upon the same final closed trajectory. 

The reason for the occurrence of oscillations in such control circuits is 
quite different from that for the circuits discussed in the earlier section of this 
report. What we are now dealing with is a system which is damped, but which 
has an exciting factor in the existence of a type of dynamic time-lag in the 
solution. This is most easily seen if we assume that X1 is a periodic signal, say 
cos wt, an assumption which is clearly incorrect but which allows one to see 
an essential feature of the equations. 

Taking X1 = cos wt, it is readily shown that }'1 = Ae -~lt  ÷  alcos(wt - -  ~'1) 
where tan ¢x - - - -  W/~l, and Z1 = Be xxt -k Ce xat -k c~171cos(wt --  ~2), where 
tan ~'~ = w(~l -~ 81)/(fl181 --  w 2) and ~1,~2 are the roots (both negative) of the 
quadratic X 2 -t- (~l + &I)X -t- ~81"---- 0. For t relatively large, the negative 
exponential terms in these solutions are small, and the dominating terms are 
the cosine functions. These have the same period as cos wt but they are shifted 
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in phase by TI and ~'z for Y1 and Z1, respectively, and there is an amplitude 
modification. Thus for large t, a major dynamic effect of these equations is a 
phase shift in the initial signal. In effect this approximates to a time-lag in the 
transmission of the signal X1, so that the oscillator shown in Fig. 13 may be 
regarded as a time-lag oscillator. It is this lag in signal transmission which acts 
as an exciting force for the oscillations. Figure 15 shows the same basic 
equations scaled roughly to represent feedback inhibition. The variable show- 
ing the sharp peaks and long troughs is then the amount of enzyme, ,t"1, 
while the other variable shown is the end-product, Z1, which acts as the control 
molecule for enzyme synthesis. The scaling used reduces Zx to about 1/100th 
of its correct value. In real time the period of such an oscillation has an 
estimated range of about 30 min to 2 hr. Again the oscillation is a limit cycle. 

CONCLUSION 

It is clear from these studies that oscillatory behavior may be expected to 
constitute a very important dynamic feature of the operation of cellular 
control processes. The oscillations which have been studied represent only a 
small class of the periodic solutions which can occur in negative feedback 
control circuits, but they serve to illustrate how spontaneous rhythmic activity 
may be expected to arise in the dynamic organization of cells. This intrinsic 
rhythmic activity represents a type of biological energy which cells and or- 
ganisms can use for organizing in trine the staggering complexity of bio- 
chemical processes which make up living systems, thus achieving coherence 
and order in these activities. The interactions of non-linear oscillators, 
illustrated in this paper, provide a dynamic basis for this self-organizing 
property of oscillating cellular control circuits. 

The work reported here and that of other investigators, such as Spangler 
and Snell(la) and Higgins(t4) on the occurrence of periodicities in metabolic 
control processes, show that oscillatory behavior can arise at different levels 
of cellular organization. These different levels of control in cells correspond 
to different frequencies of oscillation, metabolic 15eriodicities such as those 
observed by Chance, Estabrook and Ghosh(7) having a frequency of about 
1.7 per min and almost certainly not involving macromolecular synthesis; 
while the slower rhythms underlying circadian time structure apparently 
involve control processes at the level of mRNA synthesis.(15) In higher organ- 
isms the range of frequencies is extended by the development of hormonal 
control circuits which can generate monthly, seasonal, and even annual 
rhythms; while within the nervous system, neural organization appears to 
involve the occurrence of rapid rhythms generated by reverberatory arcs of 
neurones with frequencies of several cycles per see.( le, 17) 

In view of these observations, one is strongly tempted to suggest that the 
basis of much animal and plant behavior is to be found in the intrinsic 
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rhythmic or period properties of control circuits, at all levels of organization. 
Oscillatory activity in these circuits is then indeed a fundamental type of 
biological energy, and our analysis of behavior should proceed with concepts 
and quantifies which give full weight to the central importance of periodicities 
in the primary regulatory processes of organisms. It is to this end that a 
thermodynamic-like theory of molecular control mechanisms has been 
developed/s> and some of the physiological implications of this procedure 
have been discussed by Goodwin.~ is) The ultimate goal of these studies is a 
theoretical physiology of behavior, which will allow one to use the knowledge 
of elementary control processes such as those governing enzymatic synthesis 
and activity as the basis for a comprehensive, predictive theory of biological 
organization. 

SUMMARY 

The demonstration in recent years of negative feedback control processes 
operating at the molecular level in cells leads naturally to a study of their 
dynamic properties. Since such control mechanisms are known to have an 
intrinsic tendency to oscillate, and since rhythmic processes constitute a 
prominent dynamic feature of plant and animal physiology, it is suggested 
that spontaneous oscillatory behavior in an organism's control processes 
constitutes the dynamic basis of rhythmic behavior patterns. A computer 
(analogue) analysis is presented of differential equations representing control 
of enzyme synthesis by feedback repression, and non-linear oscillations are 
shown to occur. Phenomena such as synchronous locking and subharmonic 
resonance are shown to arise from the interaction of these oscillators, and the 
physiological significance of such non-linear behavior is discussed. A thermo- 
dynamic-like analysis of the properties of many interacting oscillators is 
introduced. 
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