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Fig. 3. Fully differentiated cells accomplish proximal tubular repair after acute injury. (A) Experimental scheme. SLC34a1GCE; R26tdTomato mice were placed
on a low-phosphorus diet (0.06%) 5 d before tamoxifen administration. After they returned to a normal diet, severe IRI was performed at day 0, with BrdU
administration daily for 7 d, after which the mice were killed. (B–D) Proximal tubules were labeled efficiently, and only a few cells incorporated BrdU in uninjured CLK.
In IRI kidneys, there was substantial BrdU incorporation in tdTomato+ proximal tubular cells without dilution of label upon quantitation. (E) Demonstration of the
gating strategy for the FACS of tdTomato-positive cells. Kidney cell suspensions of mice not injected with tamoxifen served as a negative control (Right). (F–J)
Quantitative PCR of tdTomato-positive cells showed that CD133 (F), CD24 (G), vimentin (H), and KIM-1 (I) mRNA levels were substantially increased in tdTomato-
positive cells in injured kidney. In addition, SLC34a1 mRNA level decreased in injured kidney (J), indicating injured, fully differentiated tubular epithelial cells lose
a differentiated phenotype after injury. Bone marrow cells serve as a positive control for stem cell markers. Average ± SE, *P < 0.01, **P < 0.05. (Scale bars, 15 μm.)

5754 | www.pnas.org



Testing Turing’s theory of morphogenesis in
chemical cells
Nathan Tompkinsa, Ning Lia, Camille Girabawea, Michael Heymanna,b, G. Bard Ermentroutc, Irving R. Epsteind,
and Seth Fradena,1

Departments of aPhysics, bBiochemistry, and dChemistry, Brandeis University, Waltham, MA 02454; and cDepartment of Mathematics, University of Pittsburgh,
Pittsburgh, PA 15260

Edited by Tom C. Lubensky, University of Pennsylvania, Philadelphia, PA, and approved January 29, 2014 (received for review November 25, 2013)

Alan Turing, in “The Chemical Basis of Morphogenesis” [Turing AM
(1952) Philos Trans R Soc Lond 237(641):37–72], described how, in
circular arrays of identical biological cells, diffusion can interact
with chemical reactions to generate up to six periodic spatiotem-
poral chemical structures. Turing proposed that one of these
structures, a stationary pattern with a chemically determined
wavelength, is responsible for differentiation. We quantitatively
test Turing’s ideas in a cellular chemical system consisting of an
emulsion of aqueous droplets containing the Belousov–Zhabotinsky
oscillatory chemical reactants, dispersed in oil, and demonstrate
that reaction-diffusion processes lead to chemical differentia-
tion, which drives physical morphogenesis in chemical cells. We
observe five of the six structures predicted by Turing. In 2D hexago-
nal arrays, a seventh structure emerges, incompatible with Turing’s
original model, which we explain by modifying the theory to
include heterogeneity.

pattern formation | nonlinear dynamics | chemical oscillations |
chemical dynamics

The Turing model of morphogenesis offers an explanation for
how identical biological cells differentiate and change shape

(1). It is difficult to overstate the impact Turing’s model has had
on developmental biology and the broad field of reaction-diffu-
sion systems (2–9). The Turing model consists of two cases: The
first, applicable for a ring of continuous material, has been ex-
perimentally confirmed in chemical systems (10–14). The second
case, relevant to biology, consists of a ring of discrete cells, each
of which contains interacting chemical species that can diffuse to
neighboring cells through a chemical selective membrane. How-
ever, as the two theories for the cases are different, establishing
the Turing model for continuous systems does not prove that
the model holds when the chemistry is compartmentalized. Due
to challenges in microfabrication, the case of a ring of cells has
not previously been experimentally tested in chemical systems.
In biology, where networks of cells arise naturally, the Turing
model remains controversial because comparison of experi-
ment and theory is hampered by incomplete knowledge of the
morphogens involved in development, the rate constants of the
reactions, the mechanisms of intercellular coupling, and the role
of elasticity (5, 7, 15, 16).
We report an experimental reaction-diffusion system ideally

suited for testing Turing’s ideas in synthetic “cells” consisting of
microfluidically produced surfactant-stabilized emulsions (17, 18) in
which aqueous droplets containing the Belousov–Zhabotinsky (BZ)
oscillatory chemical reactants (19) are dispersed in oil. In con-
trast to biology, here the chemistry is understood, rate constants
are known, and interdrop coupling is purely diffusive. We ex-
plore a large set of parameters through control of concen-
trations, drop size, spacing, and spatial arrangement of the drops
in lines and rings in one dimension and hexagonal arrays in two
dimensions. Quantitative comparison of theory and experiment
reveals two surprises: A structure not predicted by Turing’s
analysis is observed, and we measure coupling strengths orders of
magnitude weaker than predicted. Nevertheless, in the majority

of cases, we find Turing’s model to be exceedingly accurate. Most
significantly, we experimentally establish Turing’s prediction that
interacting identical cells differentiate into chemically distinct
populations, which subsequently transform physically in size,
thereby demonstrating that these synthetic cells are pluripo-
tent and that abiotic materials can undergo morphogenesis via
the Turing mechanism. For one-dimensional arrays of drops,
we observe six distinct spatiotemporal patterns, all of which are
predicted by the Turing model. In closed-packed 2D arrays, we
observe an additional pattern, of a mixed spatial-temporal nature
that is incompatible with Turing’s original model. We develop
a theory, capable of describing this mixed pattern, which posits
that the pattern arises from nonlinearity coupled with slight
heterogeneity in cellular chemistry and/or coupling strength. As
our theory is generic, and heterogeneity is ubiquitous in nature,
we expect this pattern to occur in a wide range of reaction-
diffusion systems.
The BZ reaction (19), the metal ion-catalyzed oscillatory ox-

idation of an organic substrate, typically malonic acid (MA), by
acidic bromate, has become the prototype of nonlinear dynamics
in chemistry (20) and a preferred system for exploring the be-
havior of coupled nonlinear oscillators (21). Our system (Fig. 1
and Fig. S1) consists of a monodisperse emulsion of drops of
aqueous BZ solution, whose diameter ranges from 20 to 200 μm
dispersed in a continuous phase of oil (17, 18). The drops are
surfactant-stabilized to prevent coalescence (22) (SI Methods).
Chemical coupling between drops is mediated through a small
subset of less polar intermediates; primarily an inhibitory compo-
nent, bromine (Br2), and to a lesser degree, two excitatory com-
ponents, bromine dioxide ðBrO ·

2Þ and bromous acid (HBrO2),
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which diffuse from drop to drop through the intervening oil. Here,
because the inhibitory bromine strongly partitions into the oil,
whereas the excitatory bromous acid does so only weakly, it is
possible to satisfy the long-range inhibition and short-range exci-
tation condition needed for the stationary Turing instability
(6). Because the system is closed and the BZ reactants are not
replenished, the reaction lasts no more than about 100 oscil-
lations until the final uniform equilibrium state is approached.
However, the system evolves sufficiently slowly that it can
adiabatically exhibit the dynamical instabilities predicted by
Turing for open systems (17, 18, 23).
Stationary Turing patterns have been notoriously difficult to

produce experimentally, primarily because, for the activator–
inhibitor dynamics that typically provides the necessary feedback,
the inhibitor must diffuse significantly more rapidly than the
activator (6). This condition, which cannot be satisfied with small
molecules in homogeneous solution, was first fulfilled, 40 years
after Turing’s paper, in the chlorite–iodide–malonic acid (CIMA)
system, with the activator being complexed to starch, which slows
activator transport (11, 12). Stationary Turing states were also
observed in a BZ microemulsion consisting of reverse micelles
(24, 25). The activator, polar HBrO2, resides in the aqueous in-
terior of the micelle. The inhibitor, nonpolar Br2, permeates into
the oil phase. The transport of the micelles is much slower than
the transport of bromine; hence, the criterion for the stationary
Turing instability is met. The distinction between the micelles
used previously (24, 25) and the emulsions we study here (17, 18)
is that the micelles are in dynamic equilibrium; they merge and
split on a timescale much shorter than the period of a BZ oscil-
lation and a length scale much shorter than the wavelength of the
chemical wave. Therefore, on the timescale and length scale ap-
propriate for a continuum description of the reaction-diffusion
system, the BZ microemulsion can be considered to be homo-
geneous in composition. In this sense, the BZ microemulsion

and the CIMA–starch system share a continuum description.
The BZ emulsions studied here are fundamentally different,
in that they consist of discrete immobile chemical compart-
ments that never merge. The microfluidic emulsion system
presented here is spatially heterogeneous, whereas the micelle
and CIMA–starch systems are spatially homogeneous on the
relevant timescales.

Model
To quantitatively test the Turing model in discrete cells, it is
necessary to control the boundary and initial conditions for all of
the cells. We use mixed boundary conditions: Part of the surface
enclosing the cells under study consists of other cells in which the
chemical concentrations are held constant, and part is a glass
wall impenetrable to all chemicals and thereby imposes a no-flux
condition. Constant chemical boundaries were created by exploit-
ing the photosensitivity of the BZ catalyst, ruthenium-tris(2,2′-
bipyridyl) (Rubpy). Any drop illuminated by blue light is inhibited
from oscillating and held in the reduced steady state (SI Methods).
We produced 1D linear and 2D hexagonal arrays of drops by filling
cylindrical and rectangular capillaries, respectively, and used a
computer projector coupled to a light microscope to generate
patterned illumination (18) in which each drop could be in-
dependently illuminated. This flexible illumination system al-
lowed us to isolate either pairs of drops, or a ring of active drops
from a 2D array, as shown in Fig. 1 G and H and Fig. S2, with ex-
perimental conditions specified in Table S1. Initial conditions were
set by inhibiting all drops with light, as shown in Fig. S3, and then
disinhibiting individual selected cells by extinguishing their illumi-
nation at prescribed times, thereby allowing the chemical dynamics
to proceed. A green light source tuned to the ferroin absorbance
wavelength was used to observe, but not affect, the BZ reaction.
To construct a tractable model, Turing assumed cells were

chemically uniform, small objects and considered the membranes

0

4

3

1

2

0 431 2

3
0

1

2
4

G

150µm150µm

400s

0

1

2

3

4

5

0 1 2 3 4 5

150µm

0 2 4

1 3 5

150µm

H

360s

Atim
e

300µm

space 1600s

600µm

B 60s

C

200µm

300s

D

200µm

200s

E

300µm

225s

F

200µm

350s
Fig. 1. Chemical states of linear and circular arrays of BZ drops. See Movies S2 and S3. (A–F) Cylindrical capillaries of 100-μm inner diameter filled with
a linear array of closely spaced droplets. (Upper) Space–time plots demonstrating the corresponding Turing cases (a–f) were generated by plotting the in-
tensity of a single line of pixels connecting the centers of adjacent drops as a function of time. (Lower) Cartoon above corresponding photograph of droplets.
Cartoon colors: blue, BZ drops in oxidized state; red, reduced state; cyan, oil. Chemical conditions: 300 mM bromate, 3 mM ferroin, 0.4 mM Rubpy, and 80 mM
sulfuric acid. Malonic acid (MA), NaBr, drop size, and spacing are specified in each case. Five of the six Turing solutions b–f are observed. (A) Stationary stable
oxidized state after initial transient; 10 mM MA, no NaBr, drop size of 130 μm, and oil gap of 20 μm. (B) Turing case b, (long-wavelength, oscillatory), ðqmin,ωÞ;
2.4 M MA, 10 mM NaBr, drop size of ∼230 μm, and oil gap of ∼100 μm. (C) Turing case c, (short-wavelength, stationary), ðqmax,0Þ; 20 mM MA, no NaBr, drop
size of ∼98 μm, and variable oil gap between 0 and 47 μm. (D) Turing case d, (intermediate-wavelength, stationary), (q,0); 40 mMMA, no NaBr, drop size of 95
μm, and oil gap of ∼0 μm (touching drops). (E) Turing case e, (intermediate-wavelength, oscillatory), (q,ω); 640 mMMA, 10 mM NaBr, drop size of 117 μm, and
oil gap of 3 μm. (F) Turing case f, (short-wavelength, oscillatory), ðqmax,ωÞ; 380 mMMA, 10 mM NaBr, drop size of 106 μm, and oil gap of 25 μm. (G and H) Odd
and even circular arrays. Turing case f. Rectangular capillaries with cross-section 0.1 mm × 2 mm filled with a 2D array of close-packed droplets from which
rings are created with optical isolation. (Left) Oscillatory drops are labeled; all other drops are illuminated with light (cross) and held nonoscillatory in the
reduced state. (Right) Space–time plot. Chemical conditions are as follows: 300 mM bromate, 3 mM ferroin, 80 mM sulfuric acid, 10 mM NaBr, 0.4 mM Rubpy,
640 mM MA; and drop size is ∼150 μm. (G) Five-membered ring. Drops oscillate in a pentagramal pattern. (H) Six-membered ring. Neighboring drops are π
radians out-of-phase.
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separating cells as chemically specific barriers to diffusion, ignoring
any chemical reaction or accumulation of chemicals in the mem-
brane. Turing’s resulting reaction-diffusion model consists of a ring
of point cells diffusively connected directly to nearest neighbors,
expressed as a set of equations each of the following form (1):

dci
dt

=FcðciÞ+Mcðci−1 + ci+1 − 2ciÞ; [1]

where ci is a vector containing the concentrations of the species
in the ith cell, Fc is a vector function describing the kinetics of
the c-species, and Mc is a diagonal matrix containing the coef-
ficients of diffusive transport ðμcÞ of the c-species between drops.
We describe the chemical kinetics, Fc, of the BZ chemistry with
a moel developed by Vanag and Epstein (26, 27) (VE model, SI
Methods) that considers four concentrations to vary in time: the
inhibitory components bromine (Br2) and bromide (Br−), the
oxidized form of the catalyst (ferriin), and the activator bromous
acid (HBrO2). The four VE reaction rates, Fc, contain the afore-
mentioned four variable chemical species, four more chemicals,
whose concentrations are approximated as constants in the
model, and nine known rate constants; Fc has zero adjustable
parameters. Turing did not specify how the coupling strength μc
varies with the physical-chemical parameters. To compare theory
with experiment, we supplement the Turing model by explicitly
calculating the coupling strength between drops in a capillary
using Turing’s assumptions noted above, with the caveat that
different results arise depending on the assumptions used to pro-
duce a geometric point model (27, 28):

μc =
2DcPcðb+ dÞ
d2ða+ bÞ

�
ln
�
b+ d
b

�
+
a− d
b+ d

ln
�
a− d
a

��
: [2]

See Fig. S1 and SI Methods for details of the calculation. Dc and
Pc are the diffusion and partition coefficients of the c-species in
the oil, a is the length of the BZ drop, b is the length of the oil
gap separating drops, and d is the diameter of the capillary. The
only parameter not measured in Eq. 2 is the partition coefficient
of HBrO2, Px.
To elucidate this model, Turing (1) used linear stability anal-

ysis (LSA) and identified six possible chemical structures in rings
of diffusively coupled identical cells. In LSA, one characterizes
how the steady-state concentrations, i.e., those for which dci=dt= 0,
respond to small perturbations. If all perturbations decay, then the
system is in a stable steady state. However, if any perturbations
grow with time, the steady state is unstable, and the fastest growing
perturbation is labeled a Turing instability. For a ring of N cells, the
requirement of periodicity restricts dimensionless wavevectors of
the perturbations to take on one of three possible values: qmin = 0,
qmax = 2πsmax=N, where for even numbered rings smax =N=2 and
for odd rings smax = ðN − 1Þ=2, and q= 2πs=N, where the integer s
ranges from 0< s< smax. For each possible q, the perturbation
growth can be either oscillatory with frequency ω> 0, or non-
oscillatory with ω= 0, giving a total of six possible instabilities.
Following Turing’s nomenclature, the six instabilities (a–f) are each
characterized by a wavevector and frequency, (q,ω), as follows:
Turing case (a), ðqmin; 0Þ; (b), ðqmin;ωÞ; (c), ðqmax; 0Þ; (d), (q,0); (e),
(q,ω); and (f), ðqmax;ωÞ.
The Turing model, by which we mean the nonlinear rate and

coupling equations (Eq. 1), incorporates two significant and un-
tested approximations: considering each cell as a point and
simplification of chemical transport by elimination of explicit
consideration of the intracellular medium (the oil in our experi-
ments). Furthermore, the use of LSA introduces an additional,
severe approximation. The power of the Turing model is that it
provides unambiguous physical mechanisms to explain chemical
dynamics and morphogenesis. However, as noted by Turing (1),

“This model will be a simplification and an idealization, and
consequently a falsification.” This raises the question, to what
degree do the Turing model and its LSA describe experiment?
The answer to this question is of importance to the broad field of
reaction-diffusion systems, as over a thousand papers have been
published that have built upon the Turing model, which, before
this work, has not been experimentally tested for networks of
diffusively coupled cells (4). Here, we address six fundamental
questions facing reaction-diffusion systems in general: (i) How
well does the simplified coupling term, μc, agree with experiment?
(ii) Are there more or fewer than the six predicted Turing linear
instabilities? (iii) How are the linear instabilities modified by
nonlinearities? (iv) Does the Turing model provide quantitative
and predictive understanding of experiment? (v) How do chem-
ical patterns depend on the dimensionality? (vi) Do cells se-
quentially undergo chemical and then physical morphogenesis?

Results
As a first experimental test of the Turing model, Eq. 1, for cells,
we measured the synchronization dynamics of two weakly in-
hibitory coupled drops at moderate MA concentrations, where
uncoupled drops oscillate and bromine can be considered as the
sole intercell transporter (18), i.e., Px = 0. We filled cylindrical
capillaries with drops, used light both to chemically isolate a pair
of adjacent drops and to set the initial phase difference between
the isolated drops, and measured the phase difference between
the two drops as a function of time, as shown in Fig. S1. Viewed
in transmission, the oxidized state appears bright, whereas the
reduced state appears dark. Ultimately, the drops synchronize
with a phase difference of π radians (18, 29). Fig. S1 and Movie
S1 present experimental synchronization rates as a function of
drop sizes (50–200 μm) and oil gaps (10–200 μm) for ∼ 100 drop
pairs; for these conditions, rates varied by a factor of 30. Ex-
cellent fits were obtained between the experimentally measured
synchronization rates and the full nonlinear solution of Eq. 1 if
we treated μc as a fitting parameter, which varied for each drop
size and oil gap. We also fit synchronization rates using the ex-
plicitly calculated coupling strength, Eq. 2. Although the func-
tional form of the coupling strength (Eq. 2) fit the time-
dependent synchronization data well for a wide range of oil gaps
and drop diameters, the combination of the Turing model (Eq.
1) with our explicit calculation of the interdrop coupling (Eq. 2),
overestimates the coupling strength by nearly two orders of
magnitude. That is, we replaced μc of Eq. 2 with fμc, and al-
though theory predicts f = 1, experimentally we find f = 0:0152.
Despite this discrepancy, the fact that only one phenomenolog-
ical parameter, f, is needed to reconcile theory and experiment
over a wide range of coupling strengths is an improvement over the
original Turing model, where a different phenomenological pa-
rameter, μc, is fitted for each drop diameter and oil gap. As a guide
to theorists motivated to improve our calculation of the coupling
strength, we note that the Turing model assumes a vanishing thin
membrane, whereas our experimental system has a finite-sized oil
gap. Our model of coupling strength, based on the assumptions of
the Turing model, neglects four factors, each of which reduces
coupling: nonuniformity in chemical gradients in the drop and the
oil, accumulation of chemicals in the oil, time taken to diffuse
across the oil, and chemical reactions within the oil.
Having established the Turing model is quantitatively valid for

a wide range of synchronization conditions with a single exper-
imentally determined constant in the coupling term, f = 0:0152,
we prepared a series of one-dimensional arrays of drops in rings
and lines and determined the long-term emergent chemical
states as a function of the two variables that most strongly control
interdrop behavior: MA concentration and coupling strength.
Coupling strength, μc, is conveniently tuned experimentally by
varying the drop size a and oil gap b using microfluidics. In
Fig. 1 A–F, we illustrate examples of six distinct patterns with
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the symmetry corresponding to Turing cases (a–f). Five of the
six patterns, Fig. 1 A and C–F, appear where predicted by
theory in Fig. 2B. Four of the six patterns are identified with
Turing cases (c, d, e, f). The fifth pattern has the same sym-
metry as Turing case (a). However, this pattern is predicted
be a stationary, stable state for MA concentrations below
1 mM and therefore does not arise from a Turing instability,
underscoring the point that observation of a chemical state with
a pattern corresponding to a Turing instability is insufficient evi-
dence to prove the state arises from a Turing mechanism (3, 6, 8,
30). Notably, the pattern with the symmetry of Turing case (b) is
observed in a region of parameter space not predicted by theory.
This is the sole discrepancy between theory and experiment, and we
suspect that it reflects a shortcoming of the VE model. See SI
Discussion for expanded analysis of each case andMovies S2 and S3
of the spatial-temporal patterns.
The behavior of finite rings depends on the number of drops,

N, in the ring as seen in Fig. 1 G and H and Movie S3 for two
rings with identical chemical composition, drop size, and spacing,
but with five and six drops, respectively. For these particular
chemical conditions and for N even, LSA predicts antiphase
oscillations, corresponding to Turing instability ( f) characterized
by the wavevector–frequency pair ðq max;ωÞ, as defined pre-
viously and in more detail in SI Text. Turing’s prediction is that
for N odd, no two drops will undergo an oxidation transition
simultaneously; there will be N beats per measure, whereas for N
even there will be two beats per measure. For a ring of five drops,

LSA predicts a waveform C5ðr; tÞ∝ expðið4πr=5−ωtÞÞ, with
r∈ ð0; 1; 2; 3; 4Þ the drop number. In this expression, the phase
is chosen such that a drop is oxidized when 4πr=5−ωt is equal
to a multiple of 2π. As time advances in increments of one-
fifth of a period, the oxidized state in Fig. 1G moves along the
ring in a pentagramal sequence from drops 0→ 3→ 1→ 4→ 2.
For the ring of six drops, C6ðr; tÞ∝ expðiðπr−ωtÞÞ, with
r∈ ð0; 1; 2; 3; 4; 5Þ. As shown in Fig. 1H, all even-numbered
drops oxidize simultaneously at the beginning of a period, and
one-half a period later, all odd-numbered drops oxidize. In
Fig. S4 and SI Methods, we present the LSA predictions for
rings with three, four, five, and six drops and the corresponding
experiments. For rings of drops, Turing’s LSA theory and our
experiments are in complete agreement.
Using published chemical rate constants of the VE model (26)

(Eq. S2 and Table S2), we calculate two state diagrams, one
using Turing’s LSA and the other the full nonlinear simulation
(NLS) of equations (Eq. 1) in one dimension, shown in Fig. 2.
These theory plots have no adjustable parameters, as the Turing
model treats the coupling strength, μc, as an independent vari-
able. However, to assign coupling strengths to experiment, we
explicitly calculate coupling strength using Eq. 2 to which we
introduce a fitting parameter by replacing μc of Eq. 2 with fμc.
We also fit the partition coefficient of the activator, Px. The best
agreement between the NLS and experiment was obtained for
Px = 0:05 and f = 0:14. With respect to the experimental state
diagram, the NLS overestimates coupling strength eightfold,
which is the same trend as in the case of the synchronization
experiments. In experiments and in the NLS at low MA, we find
a stable stationary state in which all of the drops are in-phase.
This has the same pattern as Turing state (a), but as noted pre-
viously, LSA reveals this state is stable and it cannot be considered
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Fig. 2. (A) Linear stability analysis (LSA) and (B) nonlinear simulations (NLS)
of the Vanag–Epstein BZ model, as a function of bromine coupling strength,
μu, and MA concentration. Note the scale change on the vertical axis at
μu = 0:4. In both figures, red hues represent stationary states, and green
hues, oscillatory states. The data are plotted with circles for 1D experiments
and squares for 2D experiments. The red disks outlined in blue indicate
a transient initial cluster state settling into a stationary Turing instability.
The data points with a letter in the center are included in Fig. 1. Space–time
plots of oscillatory states are Inset in square areas; stationary states are Inset
in rectangular areas. The dashed boundaries within the region of Turing case
(e) of the NLS diagram indicate location of traveling waves, the 0sπs state
(Fig. S6), and the 00ππ cluster state. All experimental data points are plotted
according to the definitions of μ given in the text with f = 0:14. (See SI Dis-
cussion for more on the plotting of data points.)
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Fig. 3. Observations of 2D arrays of s0π states. (A and B) Single frames
demonstrating the s0π state. The frames correspond to the first two oxida-
tion transitions, labeled a and b in C. (C) Space–time plot of drops 1–2–3
shown in A and B. Drop 1 is stationary, whereas drops 2–3 remain oscillatory
with a phase difference of π. (D) A combined image where the stationary
drops are outlined in red and the oscillatory drops are color coded by their
phase difference, ϕi = θi − θ ref, where 0≤ϕ≤ π and θ ref is the phase of the
drop indicated with the white vertical arrow. Drops where ϕi < π=2 are green
and ϕi > π=2 are blue. Notice that every third drop is stationary, and every
oscillatory drop is out of phase with its immediate neighbors; two exceptions
are noted with orange arrows. See Movie S6. Chemical conditions: 300 mM
bromate, 3 mM ferroin, 0.4 mM Rubpy, 80 mM acid, 640 mMMA, and 10 mM
NaBr. Drop size is ∼70 μm.
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a Turing state, which arises from a homogeneous unstable state.
Both state diagrams predict that as coupling strength increases
above zero the same five Turing instabilities (b–f) appear with three
oscillatory (green hues) and two nonoscillatory (red hues). Theory
correctly predicted that for low MA concentration, arrays of large
drops would oscillate and that arrays of smaller, chemically iden-
tical drops, would be stationary. For 1D arrays of drops in capil-
laries, the linear and nonlinear theories predict the same basic
features, with two notable distinctions. First, nonlinearity strongly
suppresses the stationary states. Second, “cluster” states, distinctive
oscillating patterns consistent with Turing case (e) were experi-
mentally sought and observed only after calculations of the non-
linear state diagram indicated their existence; thus, the Turing
model is predictive. Further specific comparisons are included in SI
Discussion, Figs. S5 and S6, and Movies S4 and S5.
To investigate the effect of dimensionality on Turing insta-

bilities, we performed experiments on close-packed hexagonal
arrays of drops, reported as squares in Fig. 2. For conditions
intermediate between stationary and oscillatory Turing insta-
bilities, we observed a state, shown in Fig. 3 and Movie S6, that
consists of a lattice composed of triangles of drops in which one
drop is stationary and the other two oscillate with a phase dif-
ference of π, referred to as the s0π state (17). LSA requires all
drops to share the same temporal behavior, i.e., all stationary, or
all oscillatory; thus, the s0π state cannot arise from a linear in-
stability. However, it could be a nonlinear effect, but extensive
numerical exploration of the full nonlinear chemistry using both
the Turing and finite-element models on ordered hexagonal
arrays failed to produce the s0π state. The qualitative discrepancy
between theory and experiment suggests that a critical element is
missing from the Turing model. Therefore, we developed a theo-
retical model for the s0π state, valid in general for systems un-
dergoing a Hopf bifurcation, which requires additional conditions

to the Turing model; the drops must be physically or chemically
heterogeneous, with two drops that oscillate at a higher frequency
than the third and that synchronize out-of-phase when isolated.
Our analysis, elaborated in Fig. S7 and in SI Discussion, predicts
that as the coupling strength between the two higher frequency
oscillating drops and the third is increased, there is a transition to
a state in which the third drop is stabilized in the nonoscillatory
state, whereas the other two drops continue to oscillate out-
of-phase. We numerically confirmed our theory by introducing
heterogeneity into the Turing and finite-element models, which
then produced the s0π state. Experimentally, heterogeneity in drop
frequency is about 5%, which is less than the 20% required by our
simplified analytic theory; therefore, the s0π state bears more
scrutiny. Only recently has heterogeneity been considered theo-
retically in reaction-diffusion networks (4, 31–33); our experi-
mental work demonstrates the emergence of a mixed dynamical
state caused by a remarkably small amount of heterogeneity.
As the mechanism is generic, we expect it to apply to a large
class of reaction-diffusion systems. Furthermore, we note that,
in general, the experimental state diagram for 2D arrays of
drops does not map well onto the one-dimensional nonlinear
calculation, indicating that dimensionality plays a significant
role in pattern selection.
Turing, in “The Chemical Basis of Morphogenesis” (1), ar-

gued that, in case (d) (Fig. 1D), identical biological cells chem-
ically differentiate into active and inactive stationary states. He
further speculated that an activated gene could catalyze an in-
crease in the concentration of intracellular molecules, thereby
driving physical differentiation by increasing the osmotic pres-
sure in that cell, causing it to swell. In Fig. 4 and Movie S7, we
demonstrate precisely this sequence of chemical differentiation
followed by physical morphogenesis in a hexagonal packing of
identical drops prepared in the chemical state of Turing case (d).
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Fig. 4. Images and histograms of drops demonstrating morphogenesis plotted as fraction of original drop intensity and fraction of original drop volume.
Intensity is a function of the chemical state of the BZ catalyst; bright drops are oxidized, and dark drops reduced. The color-coded line tracks the center of
each peak as a function of time. (A and B) Initially, drops are homogenous in both intensity, or chemical state, and physical volume. (C and D) At intermediate
times, the drops undergo a Turing bifurcation, becoming heterogeneous in oxidation state, but remaining homogenous in volume, as seen by the differ-
entiation into lighter and darker drops of equal size. (E and F) At later times, drops are heterogeneous in both oxidation state and volume. The oxidized
(bright) drops shrink and reduced (dark) drops swell. See Movie S7. Chemical conditions (Table S3): 200 mMMA, 0.4 mM Rubpy, 0 mM NaBr, 80 mM H2SO4, 300
mM NaBrO3, 3 mM ferroin, 0.05 × 1-mm rectangular capillary, and initial drop size of ∼66 μm.
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The drops, produced microfluidically as spheres, are stored in
a rectangular capillary and are deformed into cylindrical disks
with the same height as the capillary. The intensity of each drop
is a monotonic function of the fraction of oxidized BZ catalyst it
contains. As shown in Fig. 4A, the drops are initially homoge-
neous in chemistry and drop size. After an initial induction time,
the drops undergo a transition from this unstable steady state to
Turing case (d), in which one out of three drops is in the reduced
(dark) state and two out of three are oxidized (bright), shown in
Fig. 4C. This chemical differentiation occurs with the drop size
remaining constant. The oxidized drops consume reagents faster
than the reduced drops. This creates an osmotic pressure im-
balance, causing water to flow from the oxidized to reduced drops,
creating a morphological transformation in which the initially ho-
mogeneous cells differentiate into two populations with distinct
chemical redox states and physical sizes, as shown in Fig. 4E.
Quantitative measurements of the volume changes are in agree-
ment with theory, as elaborated in SI Text.

Conclusion
Turing’s model predicts the circumstances under which initially
homogeneous diffusively coupled cells will spontaneously evolve
spatiotemporal chemical structures. However, only a small sub-
set of chemical reactions lead to the Turing instabilities; most
reactions remain stably homogeneous. In emulsions of the os-
cillatory BZ chemical reaction, tuning coupling strength and
chemical dynamics by changing drop size and MA concentration,
respectively, reveals seven distinct chemical structures, six of
which were predicted by theory. Turing’s model eliminates the

oil phase separating cells and treats the coupling strength as a
free parameter. We extended Turing’s model to explicitly cal-
culate the coupling strength. Experiments revealed that the ex-
tended model overestimated intercellular coupling by nearly two
orders of magnitude. One experimentally determined parameter
was introduced to reconcile theory and experiment for a wide
range of conditions; eliminating this one phenomenological pa-
rameter remains a theoretical challenge. LSA of the Turing
model captures most of the qualitative features of the observed
chemical pattern formation, thereby providing a mechanistic
explanation of pattern selection. However, the full nonlinear
model must be solved to achieve quantitative agreement between
experiment and theory. We observe one chemical pattern in-
consistent with the original Turing model and propose a generic
mechanism whereby slight heterogeneity in the cells leads to
a state of mixed dynamical and stationary character. The Turing
model is regarded as a metaphor for morphogenesis in biology,
useful for a conceptual framework and to guide modeling, but
not for prediction (7). In contrast, in this chemical system, we
demonstrated that the Turing model quantitatively explains
“materials morphogenesis” in which cellular compartments first
chemically and then physically differentiate, raising the possibility of
exploiting this form of reaction-diffusion chemistry for materials
science applications.
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